Suppr超能文献

用于胰腺分割的分层3D特征学习

Hierarchical 3D Feature Learning for Pancreas Segmentation.

作者信息

Salanitri Federica Proietto, Bellitto Giovanni, Irmakci Ismail, Palazzo Simone, Bagci Ulas, Spampinato Concetto

机构信息

PeRCeiVe Lab, University of Catania, Catania, Italy.

CE, Ege University, Izmir, Turkey.

出版信息

Mach Learn Med Imaging. 2021 Sep;12966:238-247. doi: 10.1007/978-3-030-87589-3_25. Epub 2021 Sep 21.

Abstract

We propose a novel 3D fully convolutional deep network for automated pancreas segmentation from both MRI and CT scans. More specifically, the proposed model consists of a 3D encoder that learns to extract volume features at different scales; features taken at different points of the encoder hierarchy are then sent to multiple 3D decoders that individually predict intermediate segmentation maps. Finally, all segmentation maps are combined to obtain a unique detailed segmentation mask. We test our model on both CT and MRI imaging data: the publicly available NIH Pancreas-CT dataset (consisting of 82 contrast-enhanced CTs) and a private MRI dataset (consisting of 40 MRI scans). Experimental results show that our model outperforms existing methods on CT pancreas segmentation, obtaining an average Dice score of about 88%, and yields promising segmentation performance on a very challenging MRI data set (average Dice score is about 77%). Additional control experiments demonstrate that the achieved performance is due to the combination of our 3D fully-convolutional deep network and the hierarchical representation decoding, thus substantiating our architectural design.

摘要

我们提出了一种新颖的3D全卷积深度网络,用于从MRI和CT扫描中自动分割胰腺。具体而言,所提出的模型由一个3D编码器组成,该编码器学习提取不同尺度的体积特征;然后,将在编码器层次结构的不同点获取的特征发送到多个3D解码器,这些解码器分别预测中间分割图。最后,将所有分割图组合起来以获得唯一的详细分割掩码。我们在CT和MRI成像数据上测试了我们的模型:公开可用的NIH胰腺CT数据集(由82个增强CT组成)和一个私人MRI数据集(由40次MRI扫描组成)。实验结果表明,我们的模型在CT胰腺分割方面优于现有方法,平均Dice分数约为88%,并且在极具挑战性的MRI数据集上产生了有前景的分割性能(平均Dice分数约为77%)。额外的对照实验表明,所取得的性能归因于我们的3D全卷积深度网络和分层表示解码的结合,从而证实了我们的架构设计。

相似文献

1
Hierarchical 3D Feature Learning for Pancreas Segmentation.用于胰腺分割的分层3D特征学习
Mach Learn Med Imaging. 2021 Sep;12966:238-247. doi: 10.1007/978-3-030-87589-3_25. Epub 2021 Sep 21.

本文引用的文献

1
PAN: Projective Adversarial Network for Medical Image Segmentation.PAN:用于医学图像分割的投影对抗网络。
Med Image Comput Comput Assist Interv. 2019 Oct;11769:68-76. doi: 10.1007/978-3-030-32226-7_8. Epub 2019 Oct 10.
2
INN: Inflated Neural Networks for IPMN Diagnosis.国际非专利名称:用于IPMN诊断的膨胀神经网络
Med Image Comput Comput Assist Interv. 2019 Oct;11768:101-109. doi: 10.1007/978-3-030-32254-0_12. Epub 2019 Oct 10.
3
Pancreas segmentation using a dual-input v-mesh network.使用双输入 v 网格网络进行胰腺分割。
Med Image Anal. 2021 Apr;69:101958. doi: 10.1016/j.media.2021.101958. Epub 2021 Jan 22.
5
Deep Q Learning Driven CT Pancreas Segmentation With Geometry-Aware U-Net.基于深度 Q 学习的具有几何感知 U-Net 的 CT 胰腺分割。
IEEE Trans Med Imaging. 2019 Aug;38(8):1971-1980. doi: 10.1109/TMI.2019.2911588. Epub 2019 Apr 16.
9
Pancreatic cancer: why is it so hard to treat?胰腺癌:为何如此难以治疗?
Therap Adv Gastroenterol. 2013 Jul;6(4):321-37. doi: 10.1177/1756283X13478680.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验