Hsia Connie C W
Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390-9034, USA.
Cell Tissue Res. 2017 Mar;367(3):687-705. doi: 10.1007/s00441-016-2558-8. Epub 2017 Jan 13.
This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs.
本综述比较了施加于实质、脉管系统和胸部的物理应激以及胸肺相互作用驱动肺发育和代偿性生长的方式。当功能性肺单位的丧失使现有的生理结构储备不足以维持足够的功能,且对其余单位的物理应激超过临界阈值时,成熟肺中解剖学肺生长的重新启动是可能的。适当的时空机械相互关系以及胸腔内空间的可用性,对于生长启动、后续重塑和生理结果至关重要。虽然肺代偿性生长的内源性潜力得以保留且可能通过药理学方法增强,但超最佳机械刺激、结构生长不平衡或重塑不足可能会限制功能增益。在充分实现固有代偿能力之前,找到优化信号-反应关系和解决结构-功能差异的方法是必须克服的主要挑战。肺叶切除术可重复地去除已知比例的功能性肺单位,仍然是研究剩余能够再生的功能性肺单位的适应性机制、结构-功能后果和可塑性的最可靠模型。在肺叶切除术模型中建立的基本机械刺激-反应关系直接为探索有效方法提供依据,以在慢性破坏性肺病、移植和生物工程肺中最大化代偿性生长和功能。