Bisig André, Akosa Collins Ashu, Moon Jung-Hwan, Rhensius Jan, Moutafis Christoforos, von Bieren Arndt, Heidler Jakoba, Kiliani Gillian, Kammerer Matthias, Curcic Michael, Weigand Markus, Tyliszczak Tolek, Van Waeyenberge Bartel, Stoll Hermann, Schütz Gisela, Lee Kyung-Jin, Manchon Aurelien, Kläui Mathias
Department of Physics, University of Konstanz, 78457 Konstanz, Germany.
Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
Phys Rev Lett. 2016 Dec 30;117(27):277203. doi: 10.1103/PhysRevLett.117.277203.
We present a combined theoretical and experimental study, investigating the origin of the enhanced nonadiabaticity of magnetic vortex cores. Scanning transmission x-ray microscopy is used to image the vortex core gyration dynamically to measure the nonadiabaticity with high precision, including a high confidence upper bound. We show theoretically, that the large nonadiabaticity parameter observed experimentally can be explained by the presence of local spin currents arising from a texture induced emergent Hall effect. This study demonstrates that the magnetic damping α and nonadiabaticity parameter β are very sensitive to the topology of the magnetic textures, resulting in an enhanced ratio (β/α>1) in magnetic vortex cores or Skyrmions.
我们展示了一项理论与实验相结合的研究,探究磁涡旋核增强非绝热性的起源。利用扫描透射X射线显微镜对涡旋核的旋转进行动态成像,以高精度测量非绝热性,包括一个高置信度的上限。我们从理论上表明,实验中观测到的大非绝热性参数可以由纹理诱导的反常霍尔效应产生的局域自旋电流来解释。这项研究表明,磁阻尼α和非绝热性参数β对磁纹理的拓扑结构非常敏感,导致磁涡旋核或斯格明子中的比率增强(β/α>1)。