Suppr超能文献

系统毒理学中计算方法和数据的众包验证:以一种加热不燃烧候选改良风险烟草产品为例

Crowd-Sourced Verification of Computational Methods and Data in Systems Toxicology: A Case Study with a Heat-Not-Burn Candidate Modified Risk Tobacco Product.

作者信息

Poussin Carine, Belcastro Vincenzo, Martin Florian, Boué Stéphanie, Peitsch Manuel C, Hoeng Julia

机构信息

PMI R&D, Philip Morris Products S.A. , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland (Part of Philip Morris International group of companies).

出版信息

Chem Res Toxicol. 2017 Apr 17;30(4):934-945. doi: 10.1021/acs.chemrestox.6b00345. Epub 2017 Feb 9.

Abstract

Systems toxicology intends to quantify the effect of toxic molecules in biological systems and unravel their mechanisms of toxicity. The development of advanced computational methods is required for analyzing and integrating high throughput data generated for this purpose as well as for extrapolating predictive toxicological outcomes and risk estimates. To ensure the performance and reliability of the methods and verify conclusions from systems toxicology data analysis, it is important to conduct unbiased evaluations by independent third parties. As a case study, we report here the results of an independent verification of methods and data in systems toxicology by crowdsourcing. The sbv IMPROVER systems toxicology computational challenge aimed to evaluate computational methods for the development of blood-based gene expression signature classification models with the ability to predict smoking exposure status. Participants created/trained models on blood gene expression data sets including smokers/mice exposed to 3R4F (a reference cigarette) or noncurrent smokers/Sham (mice exposed to air). Participants applied their models on unseen data to predict whether subjects classify closer to smoke-exposed or nonsmoke exposed groups. The data sets also included data from subjects that had been exposed to potential modified risk tobacco products (MRTPs) or that had switched to a MRTP after exposure to conventional cigarette smoke. The scoring of anonymized participants' predictions was done using predefined metrics. The top 3 performers' methods predicted class labels with area under the precision recall scores above 0.9. Furthermore, although various computational approaches were used, the crowd's results confirmed our own data analysis outcomes with regards to the classification of MRTP-related samples. Mice exposed directly to a MRTP were classified closer to the Sham group. After switching to a MRTP, the confidence that subjects belonged to the smoke-exposed group decreased significantly. Smoking exposure gene signatures that contributed to the group separation included a core set of genes highly consistent across teams such as AHRR, LRRN3, SASH1, and P2RY6. In conclusion, crowdsourcing constitutes a pertinent approach, in complement to the classical peer review process, to independently and unbiasedly verify computational methods and data for risk assessment using systems toxicology.

摘要

系统毒理学旨在量化有毒分子在生物系统中的作用,并揭示其毒性机制。为此,需要开发先进的计算方法来分析和整合高通量数据,以及推断预测性毒理学结果和风险估计。为确保这些方法的性能和可靠性,并验证系统毒理学数据分析得出的结论,由独立第三方进行无偏评估非常重要。作为一个案例研究,我们在此报告通过众包对系统毒理学中的方法和数据进行独立验证的结果。sbv IMPROVER系统毒理学计算挑战赛旨在评估用于开发基于血液的基因表达特征分类模型的计算方法,该模型应具有预测吸烟暴露状态的能力。参与者在血液基因表达数据集上创建/训练模型,这些数据集包括吸烟者/暴露于3R4F(一种参考香烟)的小鼠或非当前吸烟者/假手术组(暴露于空气的小鼠)。参与者将他们的模型应用于未见数据,以预测受试者更接近吸烟暴露组还是非吸烟暴露组。数据集还包括来自接触过潜在改良风险烟草产品(MRTPs)或在接触传统香烟烟雾后改用MRTP的受试者的数据。使用预定义的指标对匿名参与者的预测进行评分。表现最佳的前3种方法预测类别标签的精确召回分数曲线下面积高于0.9。此外,尽管使用了各种计算方法,但人群的结果在MRTP相关样本的分类方面证实了我们自己的数据分析结果。直接接触MRTP的小鼠被分类为更接近假手术组。改用MRTP后,受试者属于吸烟暴露组的置信度显著降低。有助于组间分离的吸烟暴露基因特征包括一组在各团队中高度一致的核心基因,如AHRR、LRRN3、SASH1和P2RY6。总之,众包是一种相关的方法,可作为经典同行评审过程的补充,用于独立且无偏地验证使用系统毒理学进行风险评估的计算方法和数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验