Suppr超能文献

可翻译的物种血液基因特征作为吸烟暴露的标志物:sbv IMPROVER系统毒理学挑战赛中排名靠前团队的计算方法

Species translatable blood gene signature as a marker of exposure to smoking: computational approaches of the top ranked teams in the sbv IMPROVER Systems Toxicology challenge.

作者信息

Saraç Ömer Sinan, Kumar Rahul, Dhanda Sandeep Kumar, Balcı Ali Tuğrul, Bilgen İsmail, Romero Roberto, Tarca Adi L

机构信息

Istanbul Technical University, Istanbul, Turkey.

Institute of Microbial Technology, Chandigarh, India.

出版信息

Comput Toxicol. 2018 Feb;5:25-30. doi: 10.1016/j.comtox.2017.04.001. Epub 2017 Apr 28.

Abstract

Crowdsourcing has been used to address computational challenges in systems biology and assess translation of findings across species. Sub-challenge 2 of the sbv IMPROVER Systems Toxicology Challenge was designed to determine whether a common set of genes can be used to identify exposure to cigarette smoke in both human and mouse. Participating teams used a training set of human and mouse blood gene expression data to derive parsimonious models (up to 40 genes) that classify subjects into exposure groups: smokers, former smokers, and never-smokers. Teams were ranked based on two classification performance metrics evaluated on a blinded test dataset. Prediction of current exposure to cigarette smoke in human and mouse by a common prediction model was achieved by the top ranked team (Team 219) with 89% balanced accuracy (BAC), while past exposure was predicted with only 57% BAC. The prediction model of the top ranked team was a random forest classifier trained on sets of genes that appeared best for each species separately with no overlap between species. By contrast, Team 264, ranked second (tied with Team 250), selected genes that were simultaneously predictive in both species and achieved 80% and 59% BAC when predicting current and past exposure, respectively. These performance values were lower than the 96.5% and 61% BAC estimates for current and past exposure, respectively, obtained by Team 264 (top ranked in sub-challenge 1) when using only human data. Unlike past exposure, current exposure to cigarette smoke can be accurately assessed in both human and mouse with a common prediction model based on blood mRNAs. However, requiring a gene signature to be predictive in both species resulted in a substantial decrease in balanced accuracy for prediction of current exposure to cigarette smoke (from 96.5% to 80%), suggesting species-specific responses exist.

摘要

众包已被用于应对系统生物学中的计算挑战,并评估跨物种研究结果的转化情况。sbv IMPROVER系统毒理学挑战的子挑战2旨在确定一组通用基因是否可用于识别人类和小鼠中香烟烟雾暴露情况。参与团队使用人类和小鼠血液基因表达数据的训练集来推导简约模型(最多40个基因),将受试者分类为暴露组:吸烟者、既往吸烟者和从不吸烟者。根据在一个盲法测试数据集上评估的两个分类性能指标对各团队进行排名。排名最高的团队(团队219)通过一个通用预测模型实现了对人类和小鼠当前香烟烟雾暴露的预测,平衡准确率(BAC)为89%,而对既往暴露的预测BAC仅为57%。排名最高的团队的预测模型是一个随机森林分类器,它是在分别对每个物种表现最佳的基因集上进行训练的,不同物种之间没有重叠。相比之下,排名第二(与团队250并列)的团队264选择了在两个物种中都具有预测性的基因,在预测当前和既往暴露时,BAC分别达到80%和59%。这些性能值分别低于团队264(在子挑战1中排名最高)仅使用人类数据时获得的当前和既往暴露的BAC估计值96.5%和61%。与既往暴露不同,基于血液mRNA的通用预测模型可以在人类和小鼠中准确评估当前香烟烟雾暴露情况。然而,要求基因特征在两个物种中都具有预测性会导致当前香烟烟雾暴露预测的平衡准确率大幅下降(从96.5%降至80%),这表明存在物种特异性反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c46/5856122/3491e46d1d33/nihms939671f1.jpg

相似文献

本文引用的文献

1
Epigenetic Signatures of Cigarette Smoking.吸烟的表观遗传特征
Circ Cardiovasc Genet. 2016 Oct;9(5):436-447. doi: 10.1161/CIRCGENETICS.116.001506. Epub 2016 Sep 20.
7
Sertraline induces endoplasmic reticulum stress in hepatic cells.舍曲林可诱导肝细胞内质网应激。
Toxicology. 2014 Aug 1;322:78-88. doi: 10.1016/j.tox.2014.05.007. Epub 2014 May 24.
9
Systems toxicology: from basic research to risk assessment.系统毒理学:从基础研究到风险评估
Chem Res Toxicol. 2014 Mar 17;27(3):314-29. doi: 10.1021/tx400410s. Epub 2014 Jan 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验