Broecker Peter, Trebst Simon
Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany.
Phys Rev E. 2016 Dec;94(6-1):063306. doi: 10.1103/PhysRevE.94.063306. Epub 2016 Dec 19.
In the absence of a fermion sign problem, auxiliary-field (or determinantal) quantum Monte Carlo (DQMC) approaches have long been the numerical method of choice for unbiased, large-scale simulations of interacting many-fermion systems. More recently, the conceptual scope of this approach has been expanded by introducing ingenious schemes to compute entanglement entropies within its framework. On a practical level, these approaches, however, suffer from a variety of numerical instabilities that have largely impeded their applicability. Here we report on a number of algorithmic advances to overcome many of these numerical instabilities and significantly improve the calculation of entanglement measures in the zero-temperature projective DQMC approach, ultimately allowing us to reach similar system sizes as for the computation of conventional observables. We demonstrate the applicability of this improved DQMC approach by providing an entanglement perspective on the quantum phase transition from a magnetically ordered Mott insulator to a band insulator in the bilayer square lattice Hubbard model at half filling.
在不存在费米子符号问题的情况下,辅助场(或行列式)量子蒙特卡罗(DQMC)方法长期以来一直是对相互作用的多费米子系统进行无偏大规模模拟的首选数值方法。最近,通过在其框架内引入计算纠缠熵的巧妙方案,这种方法的概念范围得到了扩展。然而,在实际层面上,这些方法存在各种数值不稳定性,这在很大程度上阻碍了它们的适用性。在此,我们报告了一些算法进展,以克服其中许多数值不稳定性,并显著改进零温投影DQMC方法中纠缠度量的计算,最终使我们能够达到与计算传统可观测量时相似的系统规模。我们通过对双层方形晶格哈伯德模型在半填充时从磁有序莫特绝缘体到能带绝缘体的量子相变提供纠缠视角,展示了这种改进的DQMC方法的适用性。