Suppr超能文献

活性手性粒子的扩散

Diffusion of active chiral particles.

作者信息

Sevilla Francisco J

机构信息

Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, México D.F., Mexico.

出版信息

Phys Rev E. 2016 Dec;94(6-1):062120. doi: 10.1103/PhysRevE.94.062120. Epub 2016 Dec 14.

Abstract

The diffusion of chiral active Brownian particles in three-dimensional space is studied analytically, by consideration of the corresponding Fokker-Planck equation for the probability density of finding a particle at position x and moving along the direction v[over ̂] at time t, and numerically, by the use of Langevin dynamics simulations. The analysis is focused on the marginal probability density of finding a particle at a given location and at a given time (independently of its direction of motion), which is found from an infinite hierarchy of differential-recurrence relations for the coefficients that appear in the multipole expansion of the probability distribution, which contains the whole kinematic information. This approach allows the explicit calculation of the time dependence of the mean-squared displacement and the time dependence of the kurtosis of the marginal probability distribution, quantities from which the effective diffusion coefficient and the "shape" of the positions distribution are examined. Oscillations between two characteristic values were found in the time evolution of the kurtosis, namely, between the value that corresponds to a Gaussian and the one that corresponds to a distribution of spherical shell shape. In the case of an ensemble of particles, each one rotating around a uniformly distributed random axis, evidence is found of the so-called effect "anomalous, yet Brownian, diffusion," for which particles follow a non-Gaussian distribution for the positions yet the mean-squared displacement is a linear function of time.

摘要

通过考虑在时间(t)时在位置(x)处找到一个沿方向(\hat{v})运动的粒子的概率密度的相应福克 - 普朗克方程,对三维空间中手性活性布朗粒子的扩散进行了分析研究,并通过使用朗之万动力学模拟进行了数值研究。分析集中在在给定位置和给定时间找到一个粒子的边际概率密度(与它的运动方向无关),这是从概率分布的多极展开中出现的系数的无限微分 - 递推关系层次结构中找到的,该层次结构包含了整个运动学信息。这种方法允许明确计算均方位移的时间依赖性和边际概率分布的峰度的时间依赖性,通过这些量来研究有效扩散系数和位置分布的“形状”。在峰度的时间演化中发现了两个特征值之间的振荡,即对应于高斯分布的值和对应于球壳形状分布的值之间的振荡。在一组粒子的情况下,每个粒子围绕均匀分布的随机轴旋转,发现了所谓的“反常但布朗”扩散效应的证据,对于这种效应,粒子的位置遵循非高斯分布,但均方位移是时间的线性函数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验