Sevilla Francisco J
Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, Ciudad de México, México.
Phys Rev E. 2020 Feb;101(2-1):022608. doi: 10.1103/PhysRevE.101.022608.
The diffusion in two dimensions of noninteracting active particles that follow an arbitrary motility pattern is considered for analysis. A Fokker-Planck-like equation is generalized to take into account an arbitrary distribution of scattered angles of the swimming direction, which encompasses the pattern of active motion of particles that move at constant speed. An exact analytical expression for the marginal probability density of finding a particle on a given position at a given instant, independently of its direction of motion, is provided, and a connection with a generalized diffusion equation is unveiled. Exact analytical expressions for the time dependence of the mean-square displacement and of the kurtosis of the distribution of the particle positions are presented. The analysis is focused in the intermediate-time regime, where the effects of the specific pattern of active motion are conspicuous. For this, it is shown that only the expectation value of the first two harmonics of the scattering angle of the direction of motion are needed. The effects of persistence and of circular motion are discussed for different families of distributions of the scattered direction of motion.
本文考虑对遵循任意运动模式的非相互作用活性粒子在二维空间中的扩散进行分析。推广了一个类似福克 - 普朗克方程,以考虑游泳方向散射角的任意分布,其中包括以恒定速度移动的粒子的活性运动模式。给出了在给定时刻在给定位置找到粒子的边际概率密度的精确解析表达式,而与粒子运动方向无关,并揭示了与广义扩散方程的联系。给出了粒子位置分布的均方位移和峰度随时间变化的精确解析表达式。分析集中在中间时间区域,其中活性运动的特定模式的影响很明显。为此,表明只需要运动方向散射角的前两个谐波的期望值。针对运动散射方向的不同分布族,讨论了持续性和圆周运动的影响。