Lee Deokjae, Jo Minjae, Kahng B
Department of Physics and Astronomy, CCSS, CTP, Seoul National University, Seoul 08826, Korea.
Phys Rev E. 2016 Dec;94(6-1):062307. doi: 10.1103/PhysRevE.94.062307. Epub 2016 Dec 15.
k-core percolation has served as a paradigmatic model of discontinuous percolation for a long time. Recently it was revealed that the order parameter of k-core percolation of random networks additionally exhibits critical behavior. Thus k-core percolation exhibits a hybrid phase transition. Unlike the critical behaviors of ordinary percolation that are well understood, those of hybrid percolation transitions have not been thoroughly understood yet. Here, we investigate the critical behavior of k-core percolation of Erdős-Rényi networks. We find numerically that the fluctuations of the order parameter and the mean avalanche size diverge in different ways. Thus, we classify the critical exponents into two types: those associated with the order parameter and those with finite avalanches. The conventional scaling relations hold within each set, however, these two critical exponents are coupled. Finally we discuss some universal features of the critical behaviors of k-core percolation and the cascade failure model on multiplex networks.
长期以来,k 核渗流一直是不连续渗流的典型模型。最近发现,随机网络的 k 核渗流的序参量还表现出临界行为。因此,k 核渗流呈现出混合相变。与普通渗流已被充分理解的临界行为不同,混合渗流转变的临界行为尚未得到透彻理解。在这里,我们研究了厄多斯 - 雷尼网络的 k 核渗流的临界行为。我们通过数值发现,序参量的涨落和平均雪崩大小以不同方式发散。因此,我们将临界指数分为两类:与序参量相关的和与有限雪崩相关的。传统的标度关系在每组内都成立,然而,这两个临界指数是相互耦合的。最后,我们讨论了 k 核渗流和多路复用网络上的级联故障模型的临界行为的一些普遍特征。