Suppr超能文献

具有双重功能的纹理化一氧化氮释放表面对细菌黏附和生物膜形成的抑制作用

Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces.

作者信息

Xu Li-Chong, Wo Yaqi, Meyerhoff Mark E, Siedlecki Christopher A

机构信息

Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States.

Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States.

出版信息

Acta Biomater. 2017 Mar 15;51:53-65. doi: 10.1016/j.actbio.2017.01.030. Epub 2017 Jan 10.

Abstract

UNLABELLED

In separate prior studies, physical topographic surface modification or nitric oxide (NO) release has been demonstrated to each be an effective approach to inhibit and control bacterial adhesion and biofilm formation on polymeric surfaces. Such approaches can prevent biomaterial-associated infection without causing the antibiotic resistance of the strain. In this work, both techniques were successfully integrated and applied to a polyurethane (PU) biomaterial surface that bears ordered pillar topographies (400/400nm and 500/500nm patterns) at the top surface and a S-nitroso-N-acetylpenicillamine (SNAP, NO donor) doped sub-layer in the middle, via a soft lithography two-stage replication process. Upon placing the SNAP textured PU films into PBS at 37°C, the decomposition of SNAP within polymer film initiates NO release with a lifetime of up to 10days at flux levels >0.5×10molmincm for a textured polyurethane layer containing 15wt% SNAP. The textured surface reduces the accessible surface area and the opportunity of bacteria-surface interaction, while the NO release from the same surface further inhibits bacterial growth and biofilm formation. Such dual functionality surfaces are shown to provide a synergistic effect on inhibition of Staphylococcus epidermidis bacterial adhesion that is significantly greater than the inhibition of bacterial adhesion achieved by either single treatment approach alone. Longer term experiments to observe biofilm formation demonstrate that the SNAP doped-textured PU surface can inhibit the biofilm formation for >28d and provide a practical approach to improve the biocompatibility of current biomimetic biomaterials and thereby reduce the risk of pathogenic infection.

STATEMENT OF SIGNIFICANCE

Microbial infection remains a significant barrier to development and implementation of advanced blood-contacting medical devices. Clearly, determining how to design and control material properties that can reduce microbial infection is a central question to biomaterial researchers. In separate prior studies, physical topographic surface modification or nitric oxide (NO) release has been demonstrated to each be an effective approach to inhibit and control bacterial adhesion and biofilm formation on polymeric surfaces. Such approaches can prevent biomaterial-associated infection without causing antibiotic resistance of the bacterial strain. However, efficiency of antimicrobial properties of each approach is still limited and far from sufficient for widespread clinical use. This work successfully integrates both techniques and applies them to a polyurethane (PU) biomaterial surface that bears dual functions, surface topographic modification and NO release. The former reduces the surface contact area and changes surface wettability, resulting in reduction of bacterial adhesion, and NO release further inhibits bacteria growth. Such dual functionalized surfaces provide a synergistic effect on inhibition of Staphylococcus epidermidis bacterial adhesion that is significantly greater than the inhibition of bacterial adhesion achieved by either single treatment approach alone. Furthermore, longer-term experiments demonstrate that the dual functionalized surfaces can inhibit biofilm formation for >28days. The success of this work provides a practical approach to improve the biocompatibility of current biomaterials and thereby reduce the risk of pathogenic infection.

摘要

未标记

在之前的单独研究中,物理形貌表面改性或一氧化氮(NO)释放已被证明各自都是抑制和控制聚合物表面细菌粘附和生物膜形成的有效方法。这些方法可以预防生物材料相关感染,而不会导致菌株产生抗生素耐药性。在这项工作中,通过软光刻两步复制工艺,这两种技术成功地整合并应用于一种聚氨酯(PU)生物材料表面,该表面在顶面具有有序的柱状形貌(400/400nm和500/500nm图案),中间有一个掺杂了S-亚硝基-N-乙酰青霉胺(SNAP,NO供体)的子层。将带有纹理的SNAP聚氨酯薄膜置于37°C的磷酸盐缓冲盐水(PBS)中时,聚合物薄膜内的SNAP分解会引发NO释放,对于含有15wt%SNAP的纹理聚氨酯层,在通量水平>0.5×10molmincm时,释放寿命可达10天。纹理表面减少了可及表面积以及细菌与表面相互作用的机会,而同一表面释放的NO进一步抑制细菌生长和生物膜形成。这种具有双重功能的表面对抑制表皮葡萄球菌细菌粘附具有协同作用,其效果明显大于单独使用任何一种单一处理方法所实现的细菌粘附抑制效果。观察生物膜形成的长期实验表明,掺杂SNAP的纹理PU表面可以抑制生物膜形成超过28天,并为提高当前仿生生物材料的生物相容性从而降低致病感染风险提供了一种实用方法。

重要性声明

微生物感染仍然是先进的血液接触医疗设备研发和应用的重大障碍。显然,确定如何设计和控制能够减少微生物感染的材料特性是生物材料研究人员面临的核心问题。在之前的单独研究中,物理形貌表面改性或一氧化氮(NO)释放已被证明各自都是抑制和控制聚合物表面细菌粘附和生物膜形成的有效方法。这些方法可以预防生物材料相关感染,而不会导致细菌菌株产生抗生素耐药性。然而,每种方法的抗菌性能效率仍然有限,远不足以广泛应用于临床。这项工作成功地整合了这两种技术,并将它们应用于一种具有双重功能的聚氨酯(PU)生物材料表面,即表面形貌改性和NO释放。前者减少了表面接触面积并改变了表面润湿性,从而减少了细菌粘附,而NO释放进一步抑制细菌生长。这种双功能化表面对抑制表皮葡萄球菌细菌粘附具有协同作用,其效果明显大于单独使用任何一种单一处理方法所实现的细菌粘附抑制效果。此外,长期实验表明,双功能化表面可以抑制生物膜形成超过28天。这项工作的成功为提高当前生物材料的生物相容性从而降低致病感染风险提供了一种实用方法。

相似文献

1
Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces.
Acta Biomater. 2017 Mar 15;51:53-65. doi: 10.1016/j.actbio.2017.01.030. Epub 2017 Jan 10.
3
A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses.
Acta Biomater. 2018 Feb;67:87-98. doi: 10.1016/j.actbio.2017.11.056. Epub 2017 Dec 8.
5
Submicron topography design for controlling staphylococcal bacterial adhesion and biofilm formation.
J Biomed Mater Res A. 2022 Jun;110(6):1238-1250. doi: 10.1002/jbm.a.37369. Epub 2022 Feb 7.
6
Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation.
Acta Biomater. 2012 Jan;8(1):72-81. doi: 10.1016/j.actbio.2011.08.009. Epub 2011 Aug 17.
7
Origin of Long-Term Storage Stability and Nitric Oxide Release Behavior of CarboSil Polymer Doped with S-Nitroso-N-acetyl-D-penicillamine.
ACS Appl Mater Interfaces. 2015 Oct 14;7(40):22218-27. doi: 10.1021/acsami.5b07501. Epub 2015 Oct 1.
8
In vivo assessment of dual-function submicron textured nitric oxide releasing catheters in a 7-day rabbit model.
Acta Biomater. 2024 May;180:372-382. doi: 10.1016/j.actbio.2024.04.009. Epub 2024 Apr 16.
10
Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces.
Biomed Mater. 2014 Jun;9(3):035003. doi: 10.1088/1748-6041/9/3/035003. Epub 2014 Mar 31.

引用本文的文献

1
Multifunctional slippery nanoemulsion-infused porous nitric oxide-releasing surfaces.
J Colloid Interface Sci. 2025 Jul;689:137199. doi: 10.1016/j.jcis.2025.02.207. Epub 2025 Feb 28.
2
Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections.
Indian J Microbiol. 2024 Sep;64(3):781-796. doi: 10.1007/s12088-024-01221-w. Epub 2024 Apr 8.
3
Glyphosate effects on growth and biofilm formation in bee gut symbionts and diverse associated bacteria.
Appl Environ Microbiol. 2024 Aug 21;90(8):e0051524. doi: 10.1128/aem.00515-24. Epub 2024 Jul 16.
4
In vivo assessment of dual-function submicron textured nitric oxide releasing catheters in a 7-day rabbit model.
Acta Biomater. 2024 May;180:372-382. doi: 10.1016/j.actbio.2024.04.009. Epub 2024 Apr 16.
6
Surface Texturing and Combinatorial Approaches to Improve Biocompatibility of Implanted Biomaterials.
Front Phys. 2022;10. doi: 10.3389/fphy.2022.994438. Epub 2022 Nov 16.
7
Nucleotide Messenger Signaling of Staphylococci in Responding to Nitric Oxide - Releasing Biomaterials.
ACS Biomater Sci Eng. 2023 Jun 12;9(6):3285-3296. doi: 10.1021/acsbiomaterials.2c01536. Epub 2023 May 8.
8
Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials.
ACS Mater Au. 2022 Sep 14;2(5):525-551. doi: 10.1021/acsmaterialsau.2c00040. Epub 2022 Aug 8.
9
Engineered platelets-based drug delivery platform for targeted thrombolysis.
Acta Pharm Sin B. 2022 Apr;12(4):2000-2013. doi: 10.1016/j.apsb.2022.01.004. Epub 2022 Jan 11.
10
A Review on Antibacterial Silk Fibroin-based Biomaterials: Current State and Prospects.
Mater Today Chem. 2022 Mar;23. doi: 10.1016/j.mtchem.2021.100673. Epub 2021 Dec 9.

本文引用的文献

1
Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications.
Materials (Basel). 2016 Feb 19;9(2):116. doi: 10.3390/ma9020116.
4
Origin of Long-Term Storage Stability and Nitric Oxide Release Behavior of CarboSil Polymer Doped with S-Nitroso-N-acetyl-D-penicillamine.
ACS Appl Mater Interfaces. 2015 Oct 14;7(40):22218-27. doi: 10.1021/acsami.5b07501. Epub 2015 Oct 1.
6
Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases.
Curr Pharm Des. 2015;21(1):31-42. doi: 10.2174/1381612820666140905112822.
7
Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces.
Biomed Mater. 2014 Jun;9(3):035003. doi: 10.1088/1748-6041/9/3/035003. Epub 2014 Mar 31.
9
A review of the biomaterials technologies for infection-resistant surfaces.
Biomaterials. 2013 Nov;34(34):8533-54. doi: 10.1016/j.biomaterials.2013.07.089. Epub 2013 Aug 15.
10
Nitric oxide integrated polyethylenimine-based tri-block copolymer for efficient antibacterial activity.
Biomaterials. 2013 Nov;34(34):8766-75. doi: 10.1016/j.biomaterials.2013.07.064. Epub 2013 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验