Suppr超能文献

贝叶斯网络推理建模确定TRIB1是癌细胞中细胞周期进程和存活的新型调节因子。

Bayesian Network Inference Modeling Identifies TRIB1 as a Novel Regulator of Cell-Cycle Progression and Survival in Cancer Cells.

作者信息

Gendelman Rina, Xing Heming, Mirzoeva Olga K, Sarde Preeti, Curtis Christina, Feiler Heidi S, McDonagh Paul, Gray Joe W, Khalil Iya, Korn W Michael

机构信息

Divisions of Gastroenterology and Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.

Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts.

出版信息

Cancer Res. 2017 Apr 1;77(7):1575-1585. doi: 10.1158/0008-5472.CAN-16-0512. Epub 2017 Jan 13.

Abstract

Molecular networks governing responses to targeted therapies in cancer cells are complex dynamic systems that demonstrate nonintuitive behaviors. We applied a novel computational strategy to infer probabilistic causal relationships between network components based on gene expression. We constructed a model comprised of an ensemble of networks using multidimensional data from cell line models of cell-cycle arrest caused by inhibition of MEK1/2. Through simulation of a reverse-engineered Bayesian network model, we generated predictions of G-S transition. The model identified known components of the cell-cycle machinery, such as CCND1, CCNE2, and CDC25A, as well as revealed novel regulators of G-S transition, IER2, TRIB1, TRIM27. Experimental validation of model predictions confirmed 10 of 12 predicted genes to have a role in G-S progression. Further analysis showed that TRIB1 regulated the cyclin D1 promoter via NFκB and AP-1 sites and sensitized cells to TRAIL-induced apoptosis. In clinical specimens of breast cancer, TRIB1 levels correlated with expression of NFκB and its target genes (), and TRIB1 copy number and expression were predictive of clinical outcome. Together, our results establish a critical role of TRIB1 in cell cycle and survival that is mediated via the modulation of NFκB signaling. .

摘要

控制癌细胞对靶向治疗反应的分子网络是复杂的动态系统,表现出非直观的行为。我们应用了一种新颖的计算策略,基于基因表达推断网络组件之间的概率因果关系。我们使用来自MEK1/2抑制导致细胞周期停滞的细胞系模型的多维数据构建了一个由网络集合组成的模型。通过对反向工程的贝叶斯网络模型进行模拟,我们生成了G-S转换的预测。该模型识别出细胞周期机制的已知组件,如CCND1、CCNE2和CDC25A,还揭示了G-S转换的新调节因子IER2、TRIB1、TRIM27。对模型预测的实验验证证实了12个预测基因中的10个在G-S进展中起作用。进一步分析表明,TRIB1通过NFκB和AP-1位点调节细胞周期蛋白D1启动子,并使细胞对TRAIL诱导的凋亡敏感。在乳腺癌临床标本中,TRIB1水平与NFκB及其靶基因的表达相关,并且TRIB1拷贝数和表达可预测临床结果。总之,我们的结果确立了TRIB1在细胞周期和生存中的关键作用,这是通过调节NFκB信号传导介导的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/103f/5410377/d9c71470145a/nihms839398f1.jpg

相似文献

引用本文的文献

本文引用的文献

3
Bayesian inference of signaling network topology in a cancer cell line.贝叶斯推断癌细胞系中信号网络的拓扑结构。
Bioinformatics. 2012 Nov 1;28(21):2804-10. doi: 10.1093/bioinformatics/bts514. Epub 2012 Aug 24.
10
Control of adipose tissue inflammation through TRB1.通过 TRB1 控制脂肪组织炎症。
Diabetes. 2010 Aug;59(8):1991-2000. doi: 10.2337/db09-1537. Epub 2010 Jun 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验