School of Computer Science & Communications Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China.
CNS Neurol Disord Drug Targets. 2017;16(2):129-136. doi: 10.2174/1871527316666170113101559.
In this paper, we propose an automatic brain tumor segmentation method based on Deep Belief Networks (DBNs) and pathological knowledge. The proposed method is targeted against gliomas (both low and high grade) obtained in multi-sequence magnetic resonance images (MRIs). Firstly, a novel deep architecture is proposed to combine the multi-sequences intensities feature extraction with classification to get the classification probabilities of each voxel. Then, graph cut based optimization is executed on the classification probabilities to strengthen the spatial relationships of voxels. At last, pathological knowledge of gliomas is applied to remove some false positives. Our method was validated in the Brain Tumor Segmentation Challenge 2012 and 2013 databases (BRATS 2012, 2013). The performance of segmentation results demonstrates our proposal providing a competitive solution with stateof- the-art methods.
在本文中,我们提出了一种基于深度置信网络(DBNs)和病理知识的自动脑肿瘤分割方法。所提出的方法针对多序列磁共振图像(MRIs)中获得的低级别和高级别胶质瘤。首先,提出了一种新的深度架构,将多序列强度特征提取与分类相结合,以获得每个体素的分类概率。然后,在分类概率上执行基于图割的优化,以增强体素的空间关系。最后,应用胶质瘤的病理知识去除一些假阳性。我们的方法在 2012 年和 2013 年的脑肿瘤分割挑战赛数据库(BRATS 2012、2013)中进行了验证。分割结果的性能表明,我们的方法提供了一种具有最先进方法的竞争解决方案。