Suppr超能文献

基于深度置信网络和病理知识的脑肿瘤分割。

Brain Tumor Segmentation Using Deep Belief Networks and Pathological Knowledge.

机构信息

School of Computer Science & Communications Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China.

出版信息

CNS Neurol Disord Drug Targets. 2017;16(2):129-136. doi: 10.2174/1871527316666170113101559.

Abstract

In this paper, we propose an automatic brain tumor segmentation method based on Deep Belief Networks (DBNs) and pathological knowledge. The proposed method is targeted against gliomas (both low and high grade) obtained in multi-sequence magnetic resonance images (MRIs). Firstly, a novel deep architecture is proposed to combine the multi-sequences intensities feature extraction with classification to get the classification probabilities of each voxel. Then, graph cut based optimization is executed on the classification probabilities to strengthen the spatial relationships of voxels. At last, pathological knowledge of gliomas is applied to remove some false positives. Our method was validated in the Brain Tumor Segmentation Challenge 2012 and 2013 databases (BRATS 2012, 2013). The performance of segmentation results demonstrates our proposal providing a competitive solution with stateof- the-art methods.

摘要

在本文中,我们提出了一种基于深度置信网络(DBNs)和病理知识的自动脑肿瘤分割方法。所提出的方法针对多序列磁共振图像(MRIs)中获得的低级别和高级别胶质瘤。首先,提出了一种新的深度架构,将多序列强度特征提取与分类相结合,以获得每个体素的分类概率。然后,在分类概率上执行基于图割的优化,以增强体素的空间关系。最后,应用胶质瘤的病理知识去除一些假阳性。我们的方法在 2012 年和 2013 年的脑肿瘤分割挑战赛数据库(BRATS 2012、2013)中进行了验证。分割结果的性能表明,我们的方法提供了一种具有最先进方法的竞争解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验