Suppr超能文献

3D多模态MRI脑胶质瘤肿瘤与水肿分割:一种图割分布匹配方法。

3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach.

作者信息

Njeh Ines, Sallemi Lamia, Ayed Ismail Ben, Chtourou Khalil, Lehericy Stephane, Galanaud Damien, Hamida Ahmed Ben

机构信息

Advanced Technologies for Medicine and Signals, ENIS, Sfax University, Tunisia.

Advanced Technologies for Medicine and Signals, ENIS, Sfax University, Tunisia.

出版信息

Comput Med Imaging Graph. 2015 Mar;40:108-19. doi: 10.1016/j.compmedimag.2014.10.009. Epub 2014 Oct 28.

Abstract

This study investigates a fast distribution-matching, data-driven algorithm for 3D multimodal MRI brain glioma tumor and edema segmentation in different modalities. We learn non-parametric model distributions which characterize the normal regions in the current data. Then, we state our segmentation problems as the optimization of several cost functions of the same form, each containing two terms: (i) a distribution matching prior, which evaluates a global similarity between distributions, and (ii) a smoothness prior to avoid the occurrence of small, isolated regions in the solution. Obtained following recent bound-relaxation results, the optima of the cost functions yield the complement of the tumor region or edema region in nearly real-time. Based on global rather than pixel wise information, the proposed algorithm does not require an external learning from a large, manually-segmented training set, as is the case of the existing methods. Therefore, the ensuing results are independent of the choice of a training set. Quantitative evaluations over the publicly available training and testing data set from the MICCAI multimodal brain tumor segmentation challenge (BraTS 2012) demonstrated that our algorithm yields a highly competitive performance for complete edema and tumor segmentation, among nine existing competing methods, with an interesting computing execution time (less than 0.5s per image).

摘要

本研究探讨了一种用于不同模态下3D多模态MRI脑胶质瘤肿瘤和水肿分割的快速分布匹配、数据驱动算法。我们学习表征当前数据中正常区域的非参数模型分布。然后,我们将分割问题表述为对几个相同形式的代价函数进行优化,每个代价函数包含两项:(i)一个分布匹配先验项,用于评估分布之间的全局相似度;(ii)一个平滑先验项,以避免在解中出现小的孤立区域。根据最近的界松弛结果,代价函数对应的最优解能在近实时的情况下给出肿瘤区域或水肿区域的互补区域。基于全局而非逐像素信息,所提出的算法不像现有方法那样需要从大量手动分割的训练集中进行外部学习。因此,得到的结果与训练集的选择无关。对来自医学图像计算与计算机辅助干预国际会议(MICCAI)多模态脑肿瘤分割挑战赛(BraTS 2012)的公开可用训练和测试数据集进行的定量评估表明,在九种现有的竞争方法中,我们的算法在完整水肿和肿瘤分割方面具有极具竞争力的性能,且计算执行时间令人关注(每张图像小于0.5秒)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验