Suppr超能文献

用于多样本中变化点检测的筛选与排序算法

THE SCREENING AND RANKING ALGORITHM FOR CHANGE-POINTS DETECTION IN MULTIPLE SAMPLES.

作者信息

Song Chi, Min Xiaoyi, Zhang Heping

机构信息

Ohio State University.

Georgia State University.

出版信息

Ann Appl Stat. 2016 Dec;10(4):2102-2129. doi: 10.1214/16-AOAS966. Epub 2017 Jan 5.

Abstract

The chromosome copy number variation (CNV) is the deviation of genomic regions from their normal copy number states, which may associate with many human diseases. Current genetic studies usually collect hundreds to thousands of samples to study the association between CNV and diseases. CNVs can be called by detecting the change-points in mean for sequences of array-based intensity measurements. Although multiple samples are of interest, the majority of the available CNV calling methods are single sample based. Only a few multiple sample methods have been proposed using scan statistics that are computationally intensive and designed toward either common or rare change-points detection. In this paper, we propose a novel multiple sample method by adaptively combining the scan statistic of the screening and ranking algorithm (SaRa), which is computationally efficient and is able to detect both common and rare change-points. We prove that asymptotically this method can find the true change-points with almost certainty and show in theory that multiple sample methods are superior to single sample methods when shared change-points are of interest. Additionally, we report extensive simulation studies to examine the performance of our proposed method. Finally, using our proposed method as well as two competing approaches, we attempt to detect CNVs in the data from the Primary Open-Angle Glaucoma Genes and Environment study, and conclude that our method is faster and requires less information while our ability to detect the CNVs is comparable or better.

摘要

染色体拷贝数变异(CNV)是基因组区域与其正常拷贝数状态的偏差,这可能与许多人类疾病相关。当前的遗传学研究通常收集数百到数千个样本,以研究CNV与疾病之间的关联。可以通过检测基于阵列强度测量序列的均值变化点来识别CNV。尽管多个样本很重要,但大多数现有的CNV识别方法都是基于单样本的。仅提出了少数几种使用扫描统计量的多样本方法,这些方法计算量很大,并且是针对常见或罕见变化点检测设计的。在本文中,我们提出了一种新颖的多样本方法,通过自适应地组合筛选和排序算法(SaRa)的扫描统计量,该方法计算效率高,能够检测常见和罕见变化点。我们证明,渐近地,该方法几乎可以确定地找到真正的变化点,并从理论上表明,当关注共享变化点时,多样本方法优于单样本方法。此外,我们报告了广泛的模拟研究,以检验我们提出的方法的性能。最后,使用我们提出的方法以及两种竞争方法,我们试图在原发性开角型青光眼基因与环境研究的数据中检测CNV,并得出结论,我们的方法更快,所需信息更少,而我们检测CNV的能力相当或更好。

相似文献

1
THE SCREENING AND RANKING ALGORITHM FOR CHANGE-POINTS DETECTION IN MULTIPLE SAMPLES.
Ann Appl Stat. 2016 Dec;10(4):2102-2129. doi: 10.1214/16-AOAS966. Epub 2017 Jan 5.
2
Modified screening and ranking algorithm for copy number variation detection.
Bioinformatics. 2015 May 1;31(9):1341-8. doi: 10.1093/bioinformatics/btu850. Epub 2014 Dec 25.
3
THE SCREENING AND RANKING ALGORITHM TO DETECT DNA COPY NUMBER VARIATIONS.
Ann Appl Stat. 2012 Sep;6(3):1306-1326. doi: 10.1214/12-AOAS539SUPP.
4
Noise cancellation using total variation for copy number variation detection.
BMC Bioinformatics. 2018 Oct 22;19(Suppl 11):361. doi: 10.1186/s12859-018-2332-x.
5
An evaluation of copy number variation detection tools for cancer using whole exome sequencing data.
BMC Bioinformatics. 2017 May 31;18(1):286. doi: 10.1186/s12859-017-1705-x.
6
Copy number variation analysis based on AluScan sequences.
J Clin Bioinforma. 2014 Dec 5;4(1):15. doi: 10.1186/s13336-014-0015-z. eCollection 2014.
7
An accurate and powerful method for copy number variation detection.
Bioinformatics. 2019 Sep 1;35(17):2891-2898. doi: 10.1093/bioinformatics/bty1041.
9
Copy Number Variation Detection Using Total Variation.
ACM BCB. 2019 Sep;2019:423-428. doi: 10.1145/3307339.3342181.
10
Multiple Change-Point Detection via a Screening and Ranking Algorithm.
Stat Sin. 2013 Jul 1;23(4):1553-1572. doi: 10.5705/ss.2012.018s.

引用本文的文献

1
Estimation of common breaks in linear panel data models via screening and ranking algorithm.
Sci Rep. 2025 Apr 2;15(1):11338. doi: 10.1038/s41598-025-96322-x.
2
An adaptive and robust method for multi-trait analysis of genome-wide association studies using summary statistics.
Eur J Hum Genet. 2024 Jun;32(6):681-690. doi: 10.1038/s41431-023-01389-7. Epub 2023 May 26.
5
An Adaptive and Robust Test for Microbial Community Analysis.
Front Genet. 2022 May 19;13:846258. doi: 10.3389/fgene.2022.846258. eCollection 2022.
6
Shall genomic correlation structure be considered in copy number variants detection?
Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab215.
7
Adaptive Fisher method detects dense and sparse signals in association analysis of SNV sets.
BMC Med Genomics. 2020 Apr 3;13(Suppl 5):46. doi: 10.1186/s12920-020-0684-3.

本文引用的文献

1
Identifying localized changes in large systems: Change-point detection for biomolecular simulations.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7454-9. doi: 10.1073/pnas.1415846112. Epub 2015 May 29.
2
Modified screening and ranking algorithm for copy number variation detection.
Bioinformatics. 2015 May 1;31(9):1341-8. doi: 10.1093/bioinformatics/btu850. Epub 2014 Dec 25.
3
Multiple Change-Point Detection via a Screening and Ranking Algorithm.
Stat Sin. 2013 Jul 1;23(4):1553-1572. doi: 10.5705/ss.2012.018s.
4
THE SCREENING AND RANKING ALGORITHM TO DETECT DNA COPY NUMBER VARIATIONS.
Ann Appl Stat. 2012 Sep;6(3):1306-1326. doi: 10.1214/12-AOAS539SUPP.
5
Simultaneous Discovery of Rare and Common Segment Variants.
Biometrika. 2013;100(1):157-172. doi: 10.1093/biomet/ass059.
6
Detecting simultaneous changepoints in multiple sequences.
Biometrika. 2010 Sep;97(3):631-645. doi: 10.1093/biomet/asq025. Epub 2010 Jun 16.
8
Genome structural variation discovery and genotyping.
Nat Rev Genet. 2011 May;12(5):363-76. doi: 10.1038/nrg2958. Epub 2011 Mar 1.
9
Pathway analysis by adaptive combination of P-values.
Genet Epidemiol. 2009 Dec;33(8):700-9. doi: 10.1002/gepi.20422.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验