Suppr超能文献

自适应 Fisher 方法可用于检测 SNV 集关联分析中的密集和稀疏信号。

Adaptive Fisher method detects dense and sparse signals in association analysis of SNV sets.

机构信息

Department of Statistics, The Ohio State University, 1948 Neil Ave., Columbus, OH 43210, US.

Department of Mathematics and Statistics, Kenyon College, 201 N College Rd., Gambier, Ohio 43022, US.

出版信息

BMC Med Genomics. 2020 Apr 3;13(Suppl 5):46. doi: 10.1186/s12920-020-0684-3.

Abstract

BACKGROUND

With the development of next generation sequencing (NGS) technology and genotype imputation methods, statistical methods have been proposed to test a set of genomic variants together to detect if any of them is associated with the phenotype or disease. In practice, within the set, there is an unknown proportion of variants truly causal or associated with the disease. There is a demand for statistical methods with high power in both dense and sparse scenarios, where the proportion of causal or associated variants is large or small respectively.

RESULTS

We propose a new association test - weighted Adaptive Fisher (wAF) that can adapt to both dense and sparse scenarios by adding weights to the Adaptive Fisher (AF) method we developed before. Using simulation, we show that wAF enjoys comparable or better power to popular methods such as sequence kernel association tests (SKAT and SKAT-O) and adaptive SPU (aSPU) test. We apply wAF to a publicly available schizophrenia dataset, and successfully detect thirteen genes. Among them, three genes are supported by existing literature; six are plausible as they either relate to other neurological diseases or have relevant biological functions.

CONCLUSIONS

The proposed wAF method is a powerful disease-variants association test in both dense and sparse scenarios. Both simulation studies and real data analysis indicate the potential of wAF for new biological findings.

摘要

背景

随着下一代测序(NGS)技术和基因型推断方法的发展,已经提出了统计方法来一起检测一组基因组变体,以检测它们中的任何一个是否与表型或疾病相关。在实践中,在该组中,有一个未知比例的变体是真正与疾病相关或因果相关的。因此,需要在密集和稀疏两种情况下都具有高功效的统计方法,其中因果或相关变体的比例分别较大或较小。

结果

我们提出了一种新的关联测试 - 加权自适应 Fisher(wAF)方法,该方法可以通过为我们之前开发的自适应 Fisher(AF)方法添加权重来适应密集和稀疏两种情况。通过模拟,我们表明 wAF 与流行的方法(如序列核关联测试(SKAT 和 SKAT-O)和自适应 SPU(aSPU)测试)具有可比或更好的功效。我们将 wAF 应用于一个公开的精神分裂症数据集,并成功检测到十三个基因。其中,三个基因得到现有文献的支持;六个基因是合理的,因为它们要么与其他神经疾病有关,要么具有相关的生物学功能。

结论

所提出的 wAF 方法在密集和稀疏两种情况下都是一种强大的疾病-变体关联测试方法。模拟研究和真实数据分析都表明了 wAF 在新生物学发现方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/970f/7118831/3a82e99dceb8/12920_2020_684_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验