Suppr超能文献

判别弹性网络正则化线性回归。

Discriminative Elastic-Net Regularized Linear Regression.

出版信息

IEEE Trans Image Process. 2017 Mar;26(3):1466-1481. doi: 10.1109/TIP.2017.2651396. Epub 2017 Jan 11.

Abstract

In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.

摘要

在本文中,我们旨在学习紧凑且有判别力的线性回归模型。线性回归已广泛应用于不同的问题中。然而,大多数现有的线性回归方法都利用传统的零一矩阵作为回归目标,这极大地限制了回归模型的灵活性。这些方法的另一个主要局限性在于,由于其判别能力较弱,学习到的投影矩阵无法精确地将图像特征投影到目标空间。为此,我们提出了弹性网络正则化线性回归(ENLR)框架,并开发了两种具有以下特殊特征的稳健线性回归模型。首先,我们的方法利用两种特殊策略,通过将严格的二进制目标放宽为更可行的变量矩阵,来扩大不同类别的边界。其次,引入了稳健的弹性网络正则化奇异值,以增强学习到的投影矩阵的紧凑性和有效性。第三,ENLR 的优化问题在每次迭代中都有封闭形式的解,可以有效地求解。最后,我们的方法不是直接利用投影矩阵进行识别,而是将变换后的特征作为新的判别表示来进行最终的图像分类。与传统的线性回归模型及其变体相比,我们的方法在图像分类中更为准确。在公开可用的数据集中进行的广泛实验证明,所提出的框架可以优于最新的方法。我们的方法的 MATLAB 代码可在 http://www.yongxu.org/lunwen.html 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验