Kim Eunghee, Park Jong-Jin, Lee Gyuseok, Cho Jeong-Seok, Park Seul-Ki, Yun Dae-Yong, Park Kee-Jai, Lim Jeong-Ho
Smart food manufacturing project group, Korea Food Research Institute, Wanju-gun 55365, South Korea.
Food safety and distribution research group, Korea Food Research Institute, Wanju-gun 55365, South Korea.
Food Chem X. 2024 Aug 23;23:101763. doi: 10.1016/j.fochx.2024.101763. eCollection 2024 Oct 30.
In this study, we explored the application of Short-Wave Infrared (SWIR) hyperspectral imaging combined with Competitive Adaptive Reweighted Sampling (CARS) and advanced regression models for the non-destructive assessment of protein content in dried laver. Utilizing a spectral range of 900-1700 nm, we aimed to refine the quality control process by selecting informative wavelengths through CARS and applying various preprocessing techniques (standard normal variate [SNV], Savitzky-Golay filtering [SG], Orthogonal Signal Correction [OSC], and StandardScaler [SS]) to enhance the model's accuracy. The SNV-OSC-StandardScaler- Support vector regression (SVR) model trained on CARS-selected wavelengths significantly outperformed the other configurations, achieving a prediction determination coefficient (Rp) of 0.9673, root mean square error of prediction of 0.4043, and residual predictive deviation of 5.533. These results highlight SWIR hyperspectral imaging's potential as a rapid and precise tool for assessing dried laver quality, aiding food industry quality control and dried laver market growth.
在本研究中,我们探索了短波红外(SWIR)高光谱成像结合竞争性自适应重加权采样(CARS)和先进回归模型用于紫菜干中蛋白质含量的无损评估。利用900 - 1700纳米的光谱范围,我们旨在通过CARS选择信息性波长并应用各种预处理技术(标准正态变量变换[SNV]、Savitzky - Golay滤波[SG]、正交信号校正[OSC]和标准归一化[SS])来优化质量控制过程,以提高模型的准确性。在CARS选择的波长上训练的SNV - OSC - 标准归一化 - 支持向量回归(SVR)模型显著优于其他配置,预测决定系数(Rp)达到0.9673,预测均方根误差为0.4043,剩余预测偏差为5.533。这些结果突出了SWIR高光谱成像作为评估紫菜干质量的快速精确工具的潜力,有助于食品行业的质量控制和紫菜干市场的发展。