Suppr超能文献

学习使用优化的锚点嵌入进行哈希以实现可扩展检索。

Learning to Hash With Optimized Anchor Embedding for Scalable Retrieval.

出版信息

IEEE Trans Image Process. 2017 Mar;26(3):1344-1354. doi: 10.1109/TIP.2017.2652730. Epub 2017 Jan 16.

Abstract

Sparse representation and image hashing are powerful tools for data representation and image retrieval respectively. The combinations of these two tools for scalable image retrieval, i.e., sparse hashing (SH) methods, have been proposed in recent years and the preliminary results are promising. The core of those methods is a scheme that can efficiently embed the (high-dimensional) image features into a low-dimensional Hamming space, while preserving the similarity between features. Existing SH methods mostly focus on finding better sparse representations of images in the hash space. We argue that the anchor set utilized in sparse representation is also crucial, which was unfortunately underestimated by the prior art. To this end, we propose a novel SH method that optimizes the integration of the anchors, such that the features can be better embedded and binarized, termed as Sparse Hashing with Optimized Anchor Embedding. The central idea is to push the anchors far from the axis while preserving their relative positions so as to generate similar hashcodes for neighboring features. We formulate this idea as an orthogonality constrained maximization problem and an efficient and novel optimization framework is systematically exploited. Extensive experiments on five benchmark image data sets demonstrate that our method outperforms several state-of-the-art related methods.

摘要

稀疏表示和图像哈希分别是数据表示和图像检索的强大工具。近年来,这些工具的组合,即稀疏哈希(SH)方法,已被提出,初步结果很有前景。这些方法的核心是一种能够有效地将(高维)图像特征嵌入到低维汉明空间的方案,同时保持特征之间的相似性。现有的 SH 方法主要集中于寻找在哈希空间中更好的图像稀疏表示。我们认为,稀疏表示中使用的锚点集也很关键,但这一点在之前的研究中被低估了。为此,我们提出了一种新的 SH 方法,通过优化锚点的集成,使特征能够更好地嵌入和二值化,称为带有优化锚点嵌入的稀疏哈希(Sparse Hashing with Optimized Anchor Embedding)。其核心思想是在保持相对位置的同时,将锚点推向远离坐标轴的方向,以便为相邻特征生成相似的哈希码。我们将这个想法表述为一个正交约束最大化问题,并系统地利用了一种高效而新颖的优化框架。在五个基准图像数据集上的广泛实验表明,我们的方法优于几种现有的相关方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验