Suppr超能文献

一种用于哈希的稀疏嵌入和最小方差编码方法。

A sparse embedding and least variance encoding approach to hashing.

出版信息

IEEE Trans Image Process. 2014 Sep;23(9):3737-50. doi: 10.1109/TIP.2014.2332764. Epub 2014 Jun 25.

Abstract

Hashing is becoming increasingly important in large-scale image retrieval for fast approximate similarity search and efficient data storage. Many popular hashing methods aim to preserve the kNN graph of high dimensional data points in the low dimensional manifold space, which is, however, difficult to achieve when the number of samples is big. In this paper, we propose an effective and efficient hashing approach by sparsely embedding a sample in the training sample space and encoding the sparse embedding vector over a learned dictionary. To this end, we partition the sample space into clusters via a linear spectral clustering method, and then represent each sample as a sparse vector of normalized probabilities that it falls into its several closest clusters. This actually embeds each sample sparsely in the sample space. The sparse embedding vector is employed as the feature of each sample for hashing. We then propose a least variance encoding model, which learns a dictionary to encode the sparse embedding feature, and consequently binarize the coding coefficients as the hash codes. The dictionary and the binarization threshold are jointly optimized in our model. Experimental results on benchmark data sets demonstrated the effectiveness of the proposed approach in comparison with state-of-the-art methods.

摘要

哈希技术在大规模图像检索中变得越来越重要,它可以实现快速近似相似性搜索和高效的数据存储。许多流行的哈希方法旨在保持高维数据点的 kNN 图在低维流形空间中,然而,当样本数量很大时,这很难实现。在本文中,我们通过在训练样本空间中稀疏地嵌入样本并对学习到的字典上的稀疏嵌入向量进行编码,提出了一种有效和高效的哈希方法。为此,我们通过线性谱聚类方法将样本空间划分为聚类,然后表示每个样本为它落入其几个最近聚类的归一化概率的稀疏向量。这实际上将每个样本稀疏地嵌入到样本空间中。稀疏嵌入向量用作每个样本的哈希特征。然后,我们提出了一种最小方差编码模型,该模型学习一个字典来编码稀疏嵌入特征,然后将编码系数二值化为哈希码。在我们的模型中,字典和二值化阈值是联合优化的。在基准数据集上的实验结果表明,与最先进的方法相比,所提出的方法是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验