Suppr超能文献

基于关系正则化判别稀疏学习的阿尔茨海默病诊断。

Relational-Regularized Discriminative Sparse Learning for Alzheimer's Disease Diagnosis.

出版信息

IEEE Trans Cybern. 2017 Apr;47(4):1102-1113. doi: 10.1109/TCYB.2016.2644718. Epub 2017 Jan 16.

Abstract

Accurate identification and understanding informative feature is important for early Alzheimer's disease (AD) prognosis and diagnosis. In this paper, we propose a novel discriminative sparse learning method with relational regularization to jointly predict the clinical score and classify AD disease stages using multimodal features. Specifically, we apply a discriminative learning technique to expand the class-specific difference and include geometric information for effective feature selection. In addition, two kind of relational information are incorporated to explore the intrinsic relationships among features and training subjects in terms of similarity learning. We map the original feature into the target space to identify the informative and predictive features by sparse learning technique. A unique loss function is designed to include both discriminative learning and relational regularization methods. Experimental results based on a total of 805 subjects [including 226 AD patients, 393 mild cognitive impairment (MCI) subjects, and 186 normal controls (NCs)] from AD neuroimaging initiative database show that the proposed method can obtain a classification accuracy of 94.68% for AD versus NC, 80.32% for MCI versus NC, and 74.58% for progressive MCI versus stable MCI, respectively. In addition, we achieve remarkable performance for the clinical scores prediction and classification label identification, which has efficacy for AD disease diagnosis and prognosis. The algorithm comparison demonstrates the effectiveness of the introduced learning techniques and superiority over the state-of-the-arts methods.

摘要

准确识别和理解有价值的特征对于早期阿尔茨海默病(AD)的预后和诊断非常重要。在本文中,我们提出了一种新的判别稀疏学习方法,该方法具有关系正则化功能,可使用多模态特征联合预测临床评分和分类 AD 疾病阶段。具体来说,我们应用判别学习技术来扩展特定于类别的差异,并包括几何信息以进行有效的特征选择。此外,我们还整合了两种关系信息,以根据相似性学习探索特征和训练对象之间的内在关系。我们通过稀疏学习技术将原始特征映射到目标空间,以识别有价值和可预测的特征。我们设计了一个独特的损失函数,将判别学习和关系正则化方法结合在一起。基于来自 AD 神经影像学倡议数据库的总共 805 名受试者[包括 226 名 AD 患者、393 名轻度认知障碍(MCI)患者和 186 名正常对照(NC)]的实验结果表明,所提出的方法可以分别实现 AD 与 NC 的分类准确率为 94.68%、MCI 与 NC 的分类准确率为 80.32%、进行性 MCI 与稳定 MCI 的分类准确率为 74.58%。此外,我们在临床评分预测和分类标签识别方面取得了显著的性能,这对 AD 疾病的诊断和预后具有重要意义。算法比较证明了所提出的学习技术的有效性和优于现有方法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验