Suppr超能文献

用于图像融合阿尔茨海默病分类的基于转置卷积的帕累托优化自适应学习

Pareto Optimized Adaptive Learning with Transposed Convolution for Image Fusion Alzheimer's Disease Classification.

作者信息

Odusami Modupe, Maskeliūnas Rytis, Damaševičius Robertas

机构信息

Faculty of Informatics, Kaunas University of Technology, 51368 Kaunas, Lithuania.

Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland.

出版信息

Brain Sci. 2023 Jul 8;13(7):1045. doi: 10.3390/brainsci13071045.

Abstract

Alzheimer's disease (AD) is a neurological condition that gradually weakens the brain and impairs cognition and memory. Multimodal imaging techniques have become increasingly important in the diagnosis of AD because they can help monitor disease progression over time by providing a more complete picture of the changes in the brain that occur over time in AD. Medical image fusion is crucial in that it combines data from various image modalities into a single, better-understood output. The present study explores the feasibility of employing Pareto optimized deep learning methodologies to integrate Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) images through the utilization of pre-existing models, namely the Visual Geometry Group (VGG) 11, VGG16, and VGG19 architectures. Morphological operations are carried out on MRI and PET images using Analyze 14.0 software and after which PET images are manipulated for the desired angle of alignment with MRI image using GNU Image Manipulation Program (GIMP). To enhance the network's performance, transposed convolution layer is incorporated into the previously extracted feature maps before image fusion. This process generates feature maps and fusion weights that facilitate the fusion process. This investigation concerns the assessment of the efficacy of three VGG models in capturing significant features from the MRI and PET data. The hyperparameters of the models are tuned using Pareto optimization. The models' performance is evaluated on the ADNI dataset utilizing the Structure Similarity Index Method (SSIM), Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE), and Entropy (E). Experimental results show that VGG19 outperforms VGG16 and VGG11 with an average of 0.668, 0.802, and 0.664 SSIM for CN, AD, and MCI stages from ADNI (MRI modality) respectively. Likewise, an average of 0.669, 0.815, and 0.660 SSIM for CN, AD, and MCI stages from ADNI (PET modality) respectively.

摘要

阿尔茨海默病(AD)是一种神经疾病,会逐渐损害大脑并影响认知和记忆。多模态成像技术在AD诊断中变得越来越重要,因为它们可以通过更全面地呈现AD患者大脑随时间发生的变化,帮助监测疾病进展。医学图像融合至关重要,因为它将来自各种图像模态的数据组合成一个更易于理解的单一输出。本研究探讨了采用帕累托优化深度学习方法,通过利用现有模型,即视觉几何组(VGG)11、VGG16和VGG19架构,来整合磁共振成像(MRI)和正电子发射断层扫描(PET)图像的可行性。使用Analyze 14.0软件对MRI和PET图像进行形态学操作,然后使用GNU图像处理程序(GIMP)将PET图像调整到与MRI图像所需的对齐角度。为了提高网络性能,在图像融合之前,将转置卷积层合并到先前提取的特征图中。这个过程生成了有助于融合过程的特征图和融合权重。本研究旨在评估三种VGG模型从MRI和PET数据中捕捉显著特征的效果。使用帕累托优化对模型的超参数进行调整。利用结构相似性指数方法(SSIM)、峰值信噪比(PSNR)、均方误差(MSE)和熵(E)在阿尔茨海默病神经影像学倡议(ADNI)数据集上评估模型的性能。实验结果表明,VGG19的表现优于VGG16和VGG11,在ADNI(MRI模态)的CN、AD和MCI阶段,SSIM平均值分别为0.668、0.802和0.664。同样,在ADNI(PET模态)的CN、AD和MCI阶段,SSIM平均值分别为0.669、0.815和0.660。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9f9/10377099/13a610c57556/brainsci-13-01045-g001.jpg

相似文献

3
Alzheimer's disease stage recognition from MRI and PET imaging data using Pareto-optimal quantum dynamic optimization.
Heliyon. 2024 Jul 15;10(15):e34402. doi: 10.1016/j.heliyon.2024.e34402. eCollection 2024 Aug 15.
4
BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer's disease diagnosis.
Comput Methods Programs Biomed. 2022 Apr;217:106676. doi: 10.1016/j.cmpb.2022.106676. Epub 2022 Feb 1.
5
An Effective Multimodal Image Fusion Method Using MRI and PET for Alzheimer's Disease Diagnosis.
Front Digit Health. 2021 Feb 26;3:637386. doi: 10.3389/fdgth.2021.637386. eCollection 2021.
6
Spatial adaptive and transformer fusion network (STFNet) for low-count PET blind denoising with MRI.
Med Phys. 2022 Jan;49(1):343-356. doi: 10.1002/mp.15368. Epub 2021 Dec 10.
7
Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.
Neuroinformatics. 2018 Oct;16(3-4):295-308. doi: 10.1007/s12021-018-9370-4.
8
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14.
9
Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis.
Neuroimage. 2014 Nov 1;101:569-82. doi: 10.1016/j.neuroimage.2014.06.077. Epub 2014 Jul 18.

本文引用的文献

1
Interpretable Multi-Modal Image Registration Network Based on Disentangled Convolutional Sparse Coding.
IEEE Trans Image Process. 2023;32:1078-1091. doi: 10.1109/TIP.2023.3240024. Epub 2023 Feb 7.
2
Sparse Interpretation of Graph Convolutional Networks for Multi-Modal Diagnosis of Alzheimer's Disease.
Med Image Comput Comput Assist Interv. 2022 Sep;13438:469-478. doi: 10.1007/978-3-031-16452-1_45. Epub 2022 Sep 16.
4
An Intelligent System for Early Recognition of Alzheimer's Disease Using Neuroimaging.
Sensors (Basel). 2022 Jan 19;22(3):740. doi: 10.3390/s22030740.
5
An Effective Multimodal Image Fusion Method Using MRI and PET for Alzheimer's Disease Diagnosis.
Front Digit Health. 2021 Feb 26;3:637386. doi: 10.3389/fdgth.2021.637386. eCollection 2021.
7
Single and Combined Neuroimaging Techniques for Alzheimer's Disease Detection.
Comput Intell Neurosci. 2021 Jul 13;2021:9523039. doi: 10.1155/2021/9523039. eCollection 2021.
8
9
Multi-modal latent space inducing ensemble SVM classifier for early dementia diagnosis with neuroimaging data.
Med Image Anal. 2020 Feb;60:101630. doi: 10.1016/j.media.2019.101630. Epub 2019 Dec 28.
10
Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer's disease.
Med Image Anal. 2020 Feb;60:101625. doi: 10.1016/j.media.2019.101625. Epub 2019 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验