Biomedical Physics, Dept. Physics, Ryerson University, 350 Victoria Street Toronto, ON, M5B 2K3, Canada. email:
Math Biosci Eng. 2017 Jun 1;14(3):625-653. doi: 10.3934/mbe.2017036.
We analyze a mathematical model of quorum sensing induced biofilm dispersal. It is formulated as a system of non-linear, density-dependent, diffusion-reaction equations. The governing equation for the sessile biomass comprises two non-linear diffusion effects, a degeneracy as in the porous medium equation and fast diffusion. This equation is coupled with three semi-linear diffusion-reaction equations for the concentrations of growth limiting nutrients, autoinducers, and dispersed cells. We prove the existence and uniqueness of bounded non-negative solutions of this system and study the behavior of the model in numerical simulations, where we focus on hollowing effects in established biofilms.
我们分析了一个群体感应诱导生物膜分散的数学模型。它被表述为一个非线性、密度依赖、扩散-反应方程组。静止生物量的控制方程包括两个非线性扩散效应,即多孔介质方程中的退化和快速扩散。这个方程与三个半线性扩散-反应方程耦合,用于描述生长限制营养物、自诱导物和分散细胞的浓度。我们证明了这个系统有界非负解的存在唯一性,并在数值模拟中研究了模型的行为,其中我们关注已建立的生物膜中的空心化效应。