Suppr超能文献

群体感应诱导生物膜分散模型的数学分析及空化效应的数值模拟

Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects.

机构信息

Biomedical Physics, Dept. Physics, Ryerson University, 350 Victoria Street Toronto, ON, M5B 2K3, Canada. email:

出版信息

Math Biosci Eng. 2017 Jun 1;14(3):625-653. doi: 10.3934/mbe.2017036.

Abstract

We analyze a mathematical model of quorum sensing induced biofilm dispersal. It is formulated as a system of non-linear, density-dependent, diffusion-reaction equations. The governing equation for the sessile biomass comprises two non-linear diffusion effects, a degeneracy as in the porous medium equation and fast diffusion. This equation is coupled with three semi-linear diffusion-reaction equations for the concentrations of growth limiting nutrients, autoinducers, and dispersed cells. We prove the existence and uniqueness of bounded non-negative solutions of this system and study the behavior of the model in numerical simulations, where we focus on hollowing effects in established biofilms.

摘要

我们分析了一个群体感应诱导生物膜分散的数学模型。它被表述为一个非线性、密度依赖、扩散-反应方程组。静止生物量的控制方程包括两个非线性扩散效应,即多孔介质方程中的退化和快速扩散。这个方程与三个半线性扩散-反应方程耦合,用于描述生长限制营养物、自诱导物和分散细胞的浓度。我们证明了这个系统有界非负解的存在唯一性,并在数值模拟中研究了模型的行为,其中我们关注已建立的生物膜中的空心化效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验