Department of Geological Sciences, Chungnam National University, Daejeon 34134, South Korea.
Math Biosci. 2024 Jan;367:109126. doi: 10.1016/j.mbs.2023.109126. Epub 2023 Dec 7.
Microorganisms regulate the expression of energetically expensive phenotypes via a collective decision-making mechanism known as quorum sensing (QS). This study investigates the intricate dynamics of biofilm growth and QS-controlled biofilm dispersal in heterogeneous porous media, employing a pore-scale reactive transport modeling approach. Model simulations carried out under various fluid flow conditions and biofilm growth scenarios reveal that QS processes are influenced not only by the biomass density of biofilm colonies but also by a complex interplay between pore architecture, flow velocity, and the rates of biofilm growth and dispersal. This study demonstrates that pore architecture controls the initiation of QS processes and advection gives rise to oscillatory growth of biofilms. Such oscillation is suppressed if biofilm dynamics are in favor of sustaining a sufficiently high signal concentration, such as fast growth or slow dispersal rates. By establishing a mathematical framework, this study contributes to the fundamental understanding of QS-controlled biofilm dynamics in complex environments.
微生物通过一种称为群体感应(QS)的集体决策机制来调节能量密集型表型的表达。本研究采用孔隙尺度反应输运建模方法,研究了异质多孔介质中生物膜生长和 QS 控制的生物膜分散的复杂动力学。在各种流体流动条件和生物膜生长情况下进行的模型模拟表明,QS 过程不仅受到生物膜群落的生物量密度的影响,还受到孔隙结构、流速以及生物膜生长和分散速率之间的复杂相互作用的影响。本研究表明,孔隙结构控制着 QS 过程的启动,而对流则导致生物膜的振荡生长。如果生物膜动力学有利于维持足够高的信号浓度,例如快速生长或缓慢的分散速率,则会抑制这种振荡。通过建立数学框架,本研究有助于深入理解复杂环境中 QS 控制的生物膜动力学。