Suppr超能文献

韩牛胴体性状基因组选择方法的预测性能:遗传结构的影响

Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture.

作者信息

Mehrban Hossein, Lee Deuk Hwan, Moradi Mohammad Hossein, IlCho Chung, Naserkheil Masoumeh, Ibáñez-Escriche Noelia

机构信息

Department of Animal Science, Shahrekord University, P.O. Box 115, Shahrekord, 88186-34141, Iran.

Department of Animal Life and Environment Science, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do, 456-749, Korea.

出版信息

Genet Sel Evol. 2017 Jan 4;49(1):1. doi: 10.1186/s12711-016-0283-0.

Abstract

BACKGROUND

Hanwoo beef is known for its marbled fat, tenderness, juiciness and characteristic flavor, as well as for its low cholesterol and high omega 3 fatty acid contents. As yet, there has been no comprehensive investigation to estimate genomic selection accuracy for carcass traits in Hanwoo cattle using dense markers. This study aimed at evaluating the accuracy of alternative statistical methods that differed in assumptions about the underlying genetic model for various carcass traits: backfat thickness (BT), carcass weight (CW), eye muscle area (EMA), and marbling score (MS).

METHODS

Accuracies of direct genomic breeding values (DGV) for carcass traits were estimated by applying fivefold cross-validation to a dataset including 1183 animals and approximately 34,000 single nucleotide polymorphisms (SNPs).

RESULTS

Accuracies of BayesC, Bayesian LASSO (BayesL) and genomic best linear unbiased prediction (GBLUP) methods were similar for BT, EMA and MS. However, for CW, DGV accuracy was 7% higher with BayesC than with BayesL and GBLUP. The increased accuracy of BayesC, compared to GBLUP and BayesL, was maintained for CW, regardless of the training sample size, but not for BT, EMA, and MS. Genome-wide association studies detected consistent large effects for SNPs on chromosomes 6 and 14 for CW.

CONCLUSIONS

The predictive performance of the models depended on the trait analyzed. For CW, the results showed a clear superiority of BayesC compared to GBLUP and BayesL. These findings indicate the importance of using a proper variable selection method for genomic selection of traits and also suggest that the genetic architecture that underlies CW differs from that of the other carcass traits analyzed. Thus, our study provides significant new insights into the carcass traits of Hanwoo cattle.

摘要

背景

韩牛以其大理石花纹脂肪、嫩度、多汁性和独特风味以及低胆固醇和高欧米伽3脂肪酸含量而闻名。迄今为止,尚未有利用密集标记对韩牛胴体性状的基因组选择准确性进行全面调查。本研究旨在评估对各种胴体性状(背膘厚度(BT)、胴体重(CW)、眼肌面积(EMA)和大理石花纹评分(MS))的潜在遗传模型假设不同的替代统计方法的准确性。

方法

通过对包含1183头动物和大约34000个单核苷酸多态性(SNP)的数据集进行五倍交叉验证,估计胴体性状的直接基因组育种值(DGV)的准确性。

结果

对于BT、EMA和MS,贝叶斯C(BayesC)、贝叶斯套索法(BayesL)和基因组最佳线性无偏预测(GBLUP)方法的准确性相似。然而,对于CW,BayesC的DGV准确性比BayesL和GBLUP高7%。与GBLUP和BayesL相比,BayesC在CW方面提高的准确性不受训练样本大小的影响,但在BT、EMA和MS方面则不然。全基因组关联研究检测到6号和14号染色体上的SNP对CW有一致的大效应。

结论

模型的预测性能取决于所分析的性状。对于CW,结果显示BayesC明显优于GBLUP和BayesL。这些发现表明了使用适当的变量选择方法进行性状基因组选择的重要性,也表明CW的潜在遗传结构与其他分析的胴体性状不同。因此,我们的研究为韩牛的胴体性状提供了重要的新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c544/5240470/0f529732a108/12711_2016_283_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验