Suppr超能文献

锁相双色强激光场中CO的选择性键断裂:激光场强度依赖性

Selective bond breaking of CO in phase-locked two-color intense laser fields: laser field intensity dependence.

作者信息

Endo Tomoyuki, Fujise Hikaru, Kawachi Yuuna, Ishihara Ayaka, Matsuda Akitaka, Fushitani Mizuho, Kono Hirohiko, Hishikawa Akiyoshi

机构信息

Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.

Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.

出版信息

Phys Chem Chem Phys. 2017 Feb 1;19(5):3550-3556. doi: 10.1039/c6cp07471e.

Abstract

Selective bond breaking of CO in phase-locked ω-2ω two-color intense laser fields (λ = 800 nm and 400 nm, total field intensity I ∼ 10 W cm) has been investigated by coincidence momentum imaging. The CO and O fragment ions produced by two-body Coulomb explosion, CO → CO + O, exhibit asymmetric distributions along the laser polarization direction, showing that one of the two equivalent C-O bonds is selectively broken by the laser fields. At a field intensity higher than 2 × 10 W cm, the largest fragment asymmetry is observed when the relative phase ϕ between the ω and 2ω laser fields is ∼0 and π. On the other hand, an increase of the asymmetry and a shift of the phase providing the largest asymmetry are observed at lower field intensities. The selective bond breaking and its dependence on the laser field intensity are discussed in terms of a mechanism involving deformation of the potential energy surfaces and electron recollision in intense laser fields.

摘要

通过符合动量成像研究了在锁相ω-2ω双色强激光场(λ = 800 nm和400 nm,总场强I ∼ 10 W/cm²)中CO的选择性键断裂。由两体库仑爆炸产生的CO和O碎片离子,CO → CO⁺ + O,沿激光偏振方向呈现不对称分布,表明两个等效C - O键中的一个被激光场选择性地断裂。在场强高于2×10¹³ W/cm²时,当ω和2ω激光场之间的相对相位ϕ约为0和π时,观察到最大的碎片不对称性。另一方面,在较低场强下观察到不对称性增加以及提供最大不对称性的相位发生偏移。从涉及势能面变形和强激光场中电子再碰撞的机制方面讨论了选择性键断裂及其对激光场强的依赖性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验