Materials Science and Technology Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.
Department of Aerospace Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States.
ACS Appl Mater Interfaces. 2017 Feb 1;9(4):4057-4065. doi: 10.1021/acsami.6b15011. Epub 2017 Jan 23.
Energy harvesting utilizing piezoelectric materials has become an attractive approach for converting mechanical energy into electrical power for low-power electronics. Structural composites are ideally suited for energy scavenging due to the large amount of mechanical energy they are subjected to. Here, a multifunctional composite with embedded sensing and energy harvesting is developed by integrating an active interface into carbon fiber reinforced polymer composites. By modifying the composite matrix, both rigid and flexible multifunctional composites are fabricated. Through electromechanical testing of a cantilever beam of the rigid composite, it reveals a power density of 217 pW/cc from only 1 g root-mean-square acceleration when excited at its resonant frequency of 47 Hz. Electromechanical sensor testing of the flexible multifunctional composite reveals an average voltage generation of 23.5 mV/g at its resonant frequency of 96 Hz. This research introduces a route for integrating nonstructural functionality into structural fiber composites by utilizing BaTiO coated woven carbon fiber fabrics with power scavenging and passive sensing capabilities.
利用压电材料进行能量收集已成为将机械能转换为低功率电子产品电力的一种有吸引力的方法。结构复合材料非常适合能量收集,因为它们承受大量的机械能。在这里,通过将主动界面集成到碳纤维增强聚合物复合材料中,开发出一种具有嵌入式传感和能量收集功能的多功能复合材料。通过对刚性复合材料的悬臂梁进行机电测试,当以 47 Hz 的谐振频率激励时,仅从 1 g 的均方根加速度中即可获得 217 pW/cc 的功率密度。对柔性多功能复合材料的机电传感器测试表明,在 96 Hz 的谐振频率下,平均电压产生 23.5 mV/g。本研究通过利用涂覆有 BaTiO 的机织碳纤维织物,为将非结构功能集成到结构纤维复合材料中提供了一种途径,该织物具有功率收集和无源传感能力。