ACS Appl Mater Interfaces. 2019 Dec 18;11(50):47373-47381. doi: 10.1021/acsami.9b17029. Epub 2019 Dec 9.
Here, both piezoelectric and nonpiezoelectric nanostructures are used within fiber-reinforced composites to improve the damping capabilities of the host material. This work investigates and isolates the role of both piezoelectricity and the mechanical redistribution of strain on the damping properties of fiber-reinforced composites through the integration of a nanowire interphase between the fiber and matrix. Prior works have successfully studied and reported the effectiveness of modifying the surface of the reinforcing fibers in a composite material using nanowires and other nanostructured interfaces to increase mechanical damping, however, have yet to fully investigate the mechanism dictating the observed behavior. This study analyzes the effects of nonpiezoelectric nanowire interfaces in comparison to piezoelectric nanowire interfaces of the same microscale morphology. The damping properties of carbon fiber-reinforced composites containing both sets of nanowires are investigated via dynamic mechanical analysis over a range of temperatures as well as modal analysis at the first resonant frequency. The results conclusively indicate that a combination of both mechanical and piezoelectric effects contributes to the significant increase in damping properties of fiber-reinforced composites and quantifies the individual contributions.
在这里,纤维增强复合材料中同时使用了压电和非压电纳米结构,以提高基体材料的阻尼性能。这项工作通过在纤维和基体之间集成纳米线相间层,研究并分离了压电性和应变的机械再分配对纤维增强复合材料阻尼性能的作用。先前的工作已经成功研究并报道了通过使用纳米线和其他纳米结构界面来修饰复合材料中增强纤维的表面来提高机械阻尼的有效性,但是尚未完全研究决定观察到的行为的机制。本研究分析了非压电纳米线界面与相同微尺度形态的压电纳米线界面的影响。通过在一系列温度下进行动态力学分析以及在第一共振频率下进行模态分析,研究了含有这两种纳米线的碳纤维增强复合材料的阻尼性能。结果明确表明,机械和压电效应的组合有助于显著提高纤维增强复合材料的阻尼性能,并量化了各自的贡献。