Parkkinen Pauli, Losilla Sergio A, Solala Eelis, Toivanen Elias A, Xu Wen-Hua, Sundholm Dage
Department of Chemistry, University of Helsinki , P.O. Box 55, A. I. Virtanens plats 1, Helsinki FIN-00014, Finland.
J Chem Theory Comput. 2017 Feb 14;13(2):654-665. doi: 10.1021/acs.jctc.6b01207. Epub 2017 Jan 31.
A grid-based fast multipole method (GB-FMM) for optimizing three-dimensional (3D) numerical molecular orbitals in the bubbles and cube double basis has been developed and implemented. The present GB-FMM method is a generalization of our recently published GB-FMM approach for numerically calculating electrostatic potentials and two-electron interaction energies. The orbital optimization is performed by integrating the Helmholtz kernel in the double basis. The steep part of the functions in the vicinity of the nuclei is represented by one-center bubbles functions, whereas the remaining cube part is expanded on an equidistant 3D grid. The integration of the bubbles part is treated by using one-center expansions of the Helmholtz kernel in spherical harmonics multiplied with modified spherical Bessel functions of the first and second kind, analogously to the numerical inward and outward integration approach for calculating two-electron interaction potentials in atomic structure calculations. The expressions and algorithms for massively parallel calculations on general purpose graphics processing units (GPGPU) are described. The accuracy and the correctness of the implementation has been checked by performing Hartree-Fock self-consistent-field calculations (HF-SCF) on H, HO, and CO. Our calculations show that an accuracy of 10 to 10 E can be reached in HF-SCF calculations on general molecules.
已开发并实现了一种基于网格的快速多极子方法(GB-FMM),用于在气泡和立方双基中优化三维(3D)数值分子轨道。当前的GB-FMM方法是我们最近发表的用于数值计算静电势和双电子相互作用能的GB-FMM方法的推广。通过在双基中积分亥姆霍兹核来进行轨道优化。原子核附近函数的陡峭部分由单中心气泡函数表示,而其余的立方部分则在等距三维网格上展开。气泡部分的积分通过在球谐函数中使用亥姆霍兹核的单中心展开并乘以第一类和第二类修正球贝塞尔函数来处理,类似于在原子结构计算中计算双电子相互作用势的数值向内和向外积分方法。描述了在通用图形处理单元(GPGPU)上进行大规模并行计算的表达式和算法。通过对H、HO和CO进行哈特里-福克自洽场计算(HF-SCF),检验了实现的准确性和正确性。我们的计算表明,在一般分子的HF-SCF计算中可以达到10到10E的精度。