Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158.
The Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):968-973. doi: 10.1073/pnas.1617523114. Epub 2017 Jan 17.
Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-β peptide, and it is associated with increased incidence of cardiovascular and Alzheimer's disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen-deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3.
载脂蛋白 E(apoE)在周围循环和大脑中的胆固醇转运中发挥着关键作用。人类 apoE 是一种 299 个残基的多态性蛋白质,其中较少见的 E4 同种型仅通过 C112R 取代与主要的 E3 同种型不同。apoE4 与脂蛋白颗粒和淀粉样β肽相互作用,并且与心血管疾病和阿尔茨海默病的发病率增加有关。为了了解 apoE3 和 E4 功能之间差异的结构基础,我们使用氢氘交换结合片段分离方法和质谱分析来比较它们在接近氨基酸分辨率下的二级结构。我们确定了这两种蛋白质在正常四聚体状态和突变诱导的单体突变体中的螺旋片段的位置、动力学和稳定性。与先前的 X 射线晶体学和 NMR 结果一致,N 端结构域包含四个α-螺旋,长 20 到 30 个氨基酸。单体状态下 C 端结构域相对无结构,但在自身相关的四聚体状态下形成长约 70 个氨基酸的α-螺旋。螺旋稳定性相对较低,为 4 kcal/mol 至 5 kcal/mol,与灵活性和易于可逆展开一致。四聚体 apoE3 和 E4 同种型的二级结构相似,只是 apoE4 中跨越残基 12 到 20 和 204 到 210 的一些螺旋片段未折叠。这些构象差异是由于 N 端螺旋束中的 C112R 取代引起的,可能与 apoE4 形成四聚体的能力降低有关,从而增加功能性 apoE4 单体的浓度,从而导致其与 apoE3 相比具有更高的脂质结合能力。