Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel.
Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Institute of Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E869-E878. doi: 10.1073/pnas.1612622114. Epub 2017 Jan 17.
Voltage-gated potassium 7.1 (Kv7.1) channel and KCNE1 protein coassembly forms the slow potassium current I that repolarizes the cardiac action potential. The physiological importance of the I channel is underscored by the existence of mutations in human Kv7.1 and KCNE1 genes, which cause cardiac arrhythmias, such as the long-QT syndrome (LQT) and atrial fibrillation. The proximal Kv7.1 C terminus (CT) binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP), but the role of CaM in channel function is still unclear, and its possible interaction with PIP is unknown. Our recent crystallographic study showed that CaM embraces helices A and B with the apo C lobe and calcified N lobe, respectively. Here, we reveal the competition of PIP and the calcified CaM N lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor an LQT mutation. Protein pulldown, molecular docking, molecular dynamics simulations, and patch-clamp recordings indicate that residues K526 and K527 in Kv7.1 helix B form a critical site where CaM competes with PIP to stabilize the channel open state. Data indicate that both PIP and Ca-CaM perform the same function on I channel gating by producing a left shift in the voltage dependence of activation. The LQT mutant K526E revealed a severely impaired channel function with a right shift in the voltage dependence of activation, a reduced current density, and insensitivity to gating modulation by Ca-CaM. The results suggest that, after receptor-mediated PIP depletion and increased cytosolic Ca, calcified CaM N lobe interacts with helix B in place of PIP to limit excessive I current inhibition.
电压门控钾离子通道 7.1 型(Kv7.1)和 KCNE1 蛋白共同组装形成复极化心脏动作电位的缓慢钾电流 I。人类 Kv7.1 和 KCNE1 基因的突变导致心律失常,如长 QT 综合征(LQT)和心房颤动,这突显了 I 通道的生理重要性。Kv7.1 的近端 C 末端(CT)与钙调蛋白(CaM)和磷脂酰肌醇-4,5-二磷酸(PIP)结合,但 CaM 在通道功能中的作用仍不清楚,其与 PIP 的可能相互作用也未知。我们最近的晶体学研究表明,CaM 分别与 apo C 叶和钙化 N 叶环抱螺旋 A 和 B。在这里,我们揭示了 PIP 和钙化 CaM N 叶对 Kv7.1 螺旋 B 中一个以前未被识别的位点的竞争,该位点也已知含有 LQT 突变。蛋白下拉、分子对接、分子动力学模拟和膜片钳记录表明,Kv7.1 螺旋 B 中的残基 K526 和 K527 形成一个关键位点,CaM 在此与 PIP 竞争以稳定通道开放状态。数据表明,PIP 和 Ca-CaM 通过产生激活电压依赖性的左移对 I 通道门控起相同的作用。LQT 突变体 K526E 显示出严重受损的通道功能,激活电压依赖性发生右移,电流密度降低,并且对 Ca-CaM 的门控调节不敏感。结果表明,在受体介导的 PIP 耗竭和细胞内 Ca 增加后,钙化的 CaM N 叶与螺旋 B 相互作用,代替 PIP 以限制过度的 I 电流抑制。