Suppr超能文献

应激颗粒及相关病灶组装和组成中的应激特异性差异。

Stress-specific differences in assembly and composition of stress granules and related foci.

作者信息

Aulas Anaïs, Fay Marta M, Lyons Shawn M, Achorn Christopher A, Kedersha Nancy, Anderson Paul, Ivanov Pavel

机构信息

Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.

Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.

出版信息

J Cell Sci. 2017 Mar 1;130(5):927-937. doi: 10.1242/jcs.199240. Epub 2017 Jan 17.

Abstract

Cells have developed different mechanisms to respond to stress, including the formation of cytoplasmic foci known as stress granules (SGs). SGs are dynamic and formed as a result of stress-induced inhibition of translation. Despite enormous interest in SGs due to their contribution to the pathogenesis of several human diseases, many aspects of SG formation are poorly understood. SGs induced by different stresses are generally assumed to be uniform, although some studies suggest that different SG subtypes and SG-like cytoplasmic foci exist. Here, we investigated the molecular mechanisms of SG assembly and characterized their composition when induced by various stresses. Our data revealed stress-specific differences in composition, assembly and dynamics of SGs and SG-like cytoplasmic foci. Using a set of genetically modified haploid human cells, we determined the molecular circuitry of stress-specific translation inhibition upstream of SG formation and its relation to cell survival. Finally, our studies characterize cytoplasmic stress-induced foci related to, but distinct from, canonical SGs, and also introduce haploid cells as a valuable resource to study RNA granules and translation control mechanisms.

摘要

细胞已发展出不同的机制来应对压力,包括形成被称为应激颗粒(SGs)的细胞质聚集体。SGs是动态的,由应激诱导的翻译抑制形成。尽管由于SGs在几种人类疾病发病机制中的作用而备受关注,但SG形成的许多方面仍知之甚少。不同应激诱导的SGs通常被认为是均匀的,尽管一些研究表明存在不同的SG亚型和类SG细胞质聚集体。在这里,我们研究了SG组装的分子机制,并对各种应激诱导下它们的组成进行了表征。我们的数据揭示了SGs和类SG细胞质聚集体在组成、组装和动态方面的应激特异性差异。使用一组基因改造的单倍体人类细胞,我们确定了SG形成上游应激特异性翻译抑制的分子回路及其与细胞存活的关系。最后,我们的研究表征了与经典SGs相关但又不同的细胞质应激诱导聚集体,并将单倍体细胞作为研究RNA颗粒和翻译控制机制的宝贵资源引入。

相似文献

1
Stress-specific differences in assembly and composition of stress granules and related foci.
J Cell Sci. 2017 Mar 1;130(5):927-937. doi: 10.1242/jcs.199240. Epub 2017 Jan 17.
2
Nitric oxide triggers the assembly of "type II" stress granules linked to decreased cell viability.
Cell Death Dis. 2018 Nov 13;9(11):1129. doi: 10.1038/s41419-018-1173-x.
3
Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation.
Oncotarget. 2016 May 24;7(21):30307-22. doi: 10.18632/oncotarget.8728.
5
Hydrogen peroxide induces stress granule formation independent of eIF2α phosphorylation.
Biochem Biophys Res Commun. 2012 Jul 13;423(4):763-9. doi: 10.1016/j.bbrc.2012.06.033. Epub 2012 Jun 15.
7
Effects of oxidative and thermal stresses on stress granule formation in human induced pluripotent stem cells.
PLoS One. 2017 Jul 26;12(7):e0182059. doi: 10.1371/journal.pone.0182059. eCollection 2017.
9
Methods to Classify Cytoplasmic Foci as Mammalian Stress Granules.
J Vis Exp. 2017 May 12(123):55656. doi: 10.3791/55656.

引用本文的文献

8
Functional amyloid protein FXR1 is recruited into neuronal stress granules.
Prion. 2025 Dec;19(1):1-16. doi: 10.1080/19336896.2025.2505422. Epub 2025 May 24.
10
tRNA synthetase activity is required for stress granule and P-body assembly.
bioRxiv. 2025 Mar 13:2025.03.10.642431. doi: 10.1101/2025.03.10.642431.

本文引用的文献

1
Mechanistic insights into mammalian stress granule dynamics.
J Cell Biol. 2016 Nov 7;215(3):313-323. doi: 10.1083/jcb.201609081.
2
G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits.
J Cell Biol. 2016 Mar 28;212(7):845-60. doi: 10.1083/jcb.201508028.
3
Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS?
Front Cell Neurosci. 2015 Oct 23;9:423. doi: 10.3389/fncel.2015.00423. eCollection 2015.
4
Methods for the characterization of stress granules in virus infected cells.
Methods. 2015 Nov 15;90:57-64. doi: 10.1016/j.ymeth.2015.04.009. Epub 2015 Apr 18.
5
mRNP granules. Assembly, function, and connections with disease.
RNA Biol. 2014;11(8):1019-30. doi: 10.4161/15476286.2014.972208.
6
Stress granules, P-bodies and cancer.
Biochim Biophys Acta. 2015 Jul;1849(7):861-70. doi: 10.1016/j.bbagrm.2014.11.009. Epub 2014 Dec 5.
7
Genome wide functional genetics in haploid cells.
FEBS Lett. 2014 Aug 1;588(15):2415-21. doi: 10.1016/j.febslet.2014.06.032. Epub 2014 Jun 17.
8
Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes.
Crit Rev Biochem Mol Biol. 2014 Mar-Apr;49(2):164-77. doi: 10.3109/10409238.2014.887051. Epub 2014 Feb 13.
9
Stress granules and cell signaling: more than just a passing phase?
Trends Biochem Sci. 2013 Oct;38(10):494-506. doi: 10.1016/j.tibs.2013.07.004. Epub 2013 Sep 10.
10
Regulation of mTORC1 and its impact on gene expression at a glance.
J Cell Sci. 2013 Apr 15;126(Pt 8):1713-9. doi: 10.1242/jcs.125773. Epub 2013 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验