IMPMC, Sorbonne Universités, CNRS UMR 7590, UPMC Univ Paris 6, MNHN, IRD UMR 206, 75005 Paris, France.
Biocomputing Unit, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain.
Biomed Res Int. 2016;2016:7060348. doi: 10.1155/2016/7060348. Epub 2016 Dec 21.
Three-dimensional Gaussian functions have been shown useful in representing electron microscopy (EM) density maps for studying macromolecular structure and dynamics. Methods that require setting a desired number of Gaussian functions or a maximum number of iterations may result in suboptimal representations of the structure. An alternative is to set a desired error of approximation of the given EM map and then optimize the number of Gaussian functions to achieve this approximation error. In this article, we review different applications of such an approach that uses spherical Gaussian functions of fixed standard deviation, referred to as pseudoatoms. Some of these applications use EM-map normal mode analysis (NMA) with elastic network model (ENM) (applications such as predicting conformational changes of macromolecular complexes or exploring actual conformational changes by normal-mode-based analysis of experimental data) while some other do not use NMA (denoising of EM density maps). In applications based on NMA and ENM, the advantage of using pseudoatoms in EM-map coarse-grain models is that the ENM springs are easily assigned among neighboring grains thanks to their spherical shape and uniformed size. EM-map denoising based on the map coarse-graining was so far only shown using pseudoatoms as grains.
三维高斯函数在研究大分子结构和动力学的电子显微镜(EM)密度图表示方面非常有用。需要设置所需数量的高斯函数或最大迭代次数的方法可能会导致结构的表示不太理想。另一种方法是设置给定 EM 图的近似误差,并优化高斯函数的数量以达到该近似误差。在本文中,我们回顾了使用固定标准偏差的球形高斯函数(称为伪原子)的这种方法的不同应用。这些应用中的一些使用具有弹性网络模型(ENM)的 EM 图正则模态分析(NMA)(例如预测大分子复合物的构象变化或通过基于正常模式的实验数据分析探索实际构象变化),而其他一些则不使用 NMA(EM 密度图去噪)。在基于 NMA 和 ENM 的应用中,在 EM 图粗粒模型中使用伪原子的优点是由于其球形和均匀尺寸,ENM 弹簧很容易在相邻晶粒之间分配。到目前为止,基于粗粒化的 EM 图去噪仅使用伪原子作为晶粒进行了展示。