Suppr超能文献

相似文献

1
Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures.
Sci Adv. 2017 Jan 11;3(1):e1601558. doi: 10.1126/sciadv.1601558. eCollection 2017 Jan.
2
Micro-scale fusion in dense relativistic nanowire array plasmas.
Nat Commun. 2018 Mar 14;9(1):1077. doi: 10.1038/s41467-018-03445-z.
4
Nanoscale Ultradense Z-Pinch Formation from Laser-Irradiated Nanowire Arrays.
Phys Rev Lett. 2016 Jul 15;117(3):035004. doi: 10.1103/PhysRevLett.117.035004. Epub 2016 Jul 14.
6
Experimental measurements of deep directional columnar heating by laser-generated relativistic electrons at near-solid density.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jan;65(1 Pt 2):016410. doi: 10.1103/PhysRevE.65.016410. Epub 2001 Dec 18.
7
Scaling high-order harmonic generation from laser-solid interactions to ultrahigh intensity.
Phys Rev Lett. 2013 Apr 26;110(17):175002. doi: 10.1103/PhysRevLett.110.175002. Epub 2013 Apr 24.
8
Spatial characteristics of Kalpha x-ray emission from relativistic femtosecond laser plasmas.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Nov;68(5 Pt 2):056408. doi: 10.1103/PhysRevE.68.056408. Epub 2003 Nov 21.
9
Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse.
Phys Rev Lett. 2020 Jan 24;124(3):035001. doi: 10.1103/PhysRevLett.124.035001.
10
Ultra-intense laser interaction with nanostructured near-critical plasmas.
Sci Rep. 2018 Mar 1;8(1):3834. doi: 10.1038/s41598-018-22147-6.

引用本文的文献

1
Nanowire implosion under laser amplified spontaneous emission pedestal irradiation.
Sci Rep. 2023 Nov 24;13(1):20699. doi: 10.1038/s41598-023-48090-9.
2
Enhanced laser-driven proton acceleration using nanowire targets.
Sci Rep. 2021 Jan 26;11(1):2226. doi: 10.1038/s41598-020-80392-0.
4
Ultra-intense laser interaction with nanostructured near-critical plasmas.
Sci Rep. 2018 Mar 1;8(1):3834. doi: 10.1038/s41598-018-22147-6.

本文引用的文献

1
Nanoscale Ultradense Z-Pinch Formation from Laser-Irradiated Nanowire Arrays.
Phys Rev Lett. 2016 Jul 15;117(3):035004. doi: 10.1103/PhysRevLett.117.035004. Epub 2016 Jul 14.
2
Direct heating of a laser-imploded core by ultraintense laser-driven ions.
Phys Rev Lett. 2015 May 15;114(19):195002. doi: 10.1103/PhysRevLett.114.195002. Epub 2015 May 12.
3
Gigabar spherical shock generation on the OMEGA laser.
Phys Rev Lett. 2015 Jan 30;114(4):045001. doi: 10.1103/PhysRevLett.114.045001. Epub 2015 Jan 27.
4
Design of a high-foot high-adiabat ICF capsule for the national ignition facility.
Phys Rev Lett. 2014 Feb 7;112(5):055002. doi: 10.1103/PhysRevLett.112.055002. Epub 2014 Feb 5.
5
Fuel gain exceeding unity in an inertially confined fusion implosion.
Nature. 2014 Feb 20;506(7488):343-8. doi: 10.1038/nature13008. Epub 2014 Feb 12.
6
Observations of the effect of ionization-potential depression in hot dense plasma.
Phys Rev Lett. 2013 Jun 28;110(26):265003. doi: 10.1103/PhysRevLett.110.265003. Epub 2013 Jun 26.
7
Efficiency enhancement for Kα x-ray yields from laser-driven relativistic electrons in solids.
Phys Rev Lett. 2011 Jun 10;106(23):235002. doi: 10.1103/PhysRevLett.106.235002. Epub 2011 Jun 6.
8
Measurements of electron transport in foils irradiated with a picosecond time scale laser pulse.
Phys Rev Lett. 2011 May 6;106(18):185003. doi: 10.1103/PhysRevLett.106.185003.
9
Symmetric inertial confinement fusion implosions at ultra-high laser energies.
Science. 2010 Mar 5;327(5970):1228-31. doi: 10.1126/science.1185634. Epub 2010 Jan 28.
10
X rays from microstructured targets heated by femtosecond lasers.
Opt Lett. 1994 Apr 1;19(7):484-6. doi: 10.1364/ol.19.000484.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验