Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80523, USA.
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina.
Sci Adv. 2017 Jan 11;3(1):e1601558. doi: 10.1126/sciadv.1601558. eCollection 2017 Jan.
Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10 J cm and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 10 W cm, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10 W cm will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10 J cm, equivalent to a pressure of 0.35 Tbar.
超高能量密度(UHED)物质的能量密度>1×10 J cm,压力大于 10 吉巴尔,存在于恒星中心和由世界上最大的激光驱动的惯性约束聚变胶囊中。类似的条件可以通过将紧凑、超高对比度、飞秒激光聚焦到相对论强度到由排列整齐的纳米线阵列组成的目标上来获得。我们报告了确定沉积在高纵横比纳米线阵列等离子体中的能量密度的关键物理过程的测量结果:能量穿透。通过监测在强度为 4×10 W cm 下照射的 Ni 纳米线阵列中埋置 Co 示踪剂段的 X 射线发射,我们证明了能量穿透深度可达数微米,从而导致等离子体的 UHED 达到该尺寸。通过这些测量验证的相对论三维粒子-in-cell 模拟预测,在>1×10 W cm 的强度下辐照纳米结构将导致一个几乎未被探索的极端 UHED 等离子体状态,其能量密度超过 8×10 J cm,相当于 0.35 Tbar 的压力。