Suppr超能文献

使用纳米线靶增强激光驱动质子加速

Enhanced laser-driven proton acceleration using nanowire targets.

作者信息

Vallières S, Salvadori M, Permogorov A, Cantono G, Svendsen K, Chen Z, Sun S, Consoli F, d'Humières E, Wahlström C-G, Antici P

机构信息

INRS-EMT, 1650 blvd. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada.

CELIA, Univ. of Bordeaux, 351 Cours de la Libération, 33400, Talence, France.

出版信息

Sci Rep. 2021 Jan 26;11(1):2226. doi: 10.1038/s41598-020-80392-0.

Abstract

Laser-driven proton acceleration is a growing field of interest in the high-power laser community. One of the big challenges related to the most routinely used laser-driven ion acceleration mechanism, Target-Normal Sheath Acceleration (TNSA), is to enhance the laser-to-proton energy transfer such as to maximize the proton kinetic energy and number. A way to achieve this is using nanostructured target surfaces in the laser-matter interaction. In this paper, we show that nanowire structures can increase the maximum proton energy by a factor of two, triple the proton temperature and boost the proton numbers, in a campaign performed on the ultra-high contrast 10 TW laser at the Lund Laser Center (LLC). The optimal nanowire length, generating maximum proton energies around 6 MeV, is around 1-2 [Formula: see text]m. This nanowire length is sufficient to form well-defined highly-absorptive NW forests and short enough to minimize the energy loss of hot electrons going through the target bulk. Results are further supported by Particle-In-Cell simulations. Systematically analyzing nanowire length, diameter and gap size, we examine the underlying physical mechanisms that are provoking the enhancement of the longitudinal accelerating electric field. The parameter scan analysis shows that optimizing the spatial gap between the nanowires leads to larger enhancement than by the nanowire diameter and length, through increased electron heating.

摘要

激光驱动质子加速是高功率激光领域中一个日益受到关注的研究方向。与最常用的激光驱动离子加速机制——靶面法线鞘层加速(TNSA)相关的一大挑战是提高激光到质子的能量转移,从而使质子动能和数量最大化。实现这一目标的一种方法是在激光与物质相互作用中使用纳米结构的靶面。在本文中,我们展示了在隆德激光中心(LLC)的超高对比度10太瓦激光器上进行的一系列实验中,纳米线结构可以将质子的最大能量提高两倍,使质子温度提高两倍,并增加质子数量。产生约6兆电子伏特最大质子能量的最佳纳米线长度约为1 - 2微米。这个纳米线长度足以形成定义明确的高吸收性纳米线阵列,并且短到足以使穿过靶体的热电子能量损失最小化。粒子模拟进一步支持了这些结果。通过系统分析纳米线的长度、直径和间隙尺寸,我们研究了促使纵向加速电场增强的潜在物理机制。参数扫描分析表明,通过增加电子加热,优化纳米线之间的空间间隙比优化纳米线直径和长度能带来更大的增强效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a99b/7838319/276b8a296898/41598_2020_80392_Fig2_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验