Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, USA.
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Phys Rev Lett. 2014 Feb 7;112(5):055002. doi: 10.1103/PhysRevLett.112.055002. Epub 2014 Feb 5.
The National Ignition Campaign's [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] point design implosion has achieved DT neutron yields of 7.5×10(14) neutrons, inferred stagnation pressures of 103 Gbar, and inferred areal densities (ρR) of 0.90 g/cm2 (shot N111215), values that are lower than 1D expectations by factors of 10×, 3.3×, and 1.5×, respectively. In this Letter, we present the design basis for an inertial confinement fusion capsule using an alternate indirect-drive pulse shape that is less sensitive to issues that may be responsible for this lower than expected performance. This new implosion features a higher radiation temperature in the "foot" of the pulse, three-shock pulse shape resulting in an implosion that has less sensitivity to the predicted ionization state of carbon, modestly lower convergence ratio, and significantly lower ablation Rayleigh-Taylor instability growth than that of the NIC point design capsule. The trade-off with this new design is a higher fuel adiabat that limits both fuel compression and theoretical capsule yield. The purpose of designing this capsule is to recover a more ideal one-dimensional implosion that is in closer agreement to simulation predictions. Early experimental results support our assertions since as of this Letter, a high-foot implosion has obtained a record DT yield of 2.4×10(15) neutrons (within ∼70% of 1D simulation) with fuel ρR=0.84 g/cm2 and an estimated ∼1/3 of the yield coming from α-particle self-heating.
国家点火装置[M. J. 爱德华兹等人,物理等离子体 20,070501(2013)]的[M. J. 爱德华兹等人,物理等离子体 20,070501(2013)]点设计内爆已经实现了 7.5×10(14)个氘氚中子的产额,推断出 103Gbar 的停滞压力,以及推断出的面密度(ρR)为 0.90 g/cm2(N111215 号),这些值分别比一维预期值低 10×、3.3×和 1.5×。在这封信中,我们提出了一种使用替代间接驱动脉冲形状的惯性约束聚变胶囊的设计基础,这种脉冲形状对可能导致这种低于预期性能的问题不那么敏感。这种新的内爆在脉冲的“脚”处具有更高的辐射温度,三波脉冲形状导致内爆对预测的碳电离状态的敏感性降低,收敛比略低,烧蚀瑞利-泰勒不稳定性增长明显低于 NIC 点设计胶囊。这种新设计的折衷方案是更高的燃料绝热指数,这限制了燃料的压缩和理论胶囊的产额。设计这种胶囊的目的是恢复更理想的一维内爆,使其更接近模拟预测。早期的实验结果支持了我们的观点,因为截至本函,高足内爆已经获得了创纪录的 2.4×10(15)个氘氚中子的产额(在一维模拟的约 70%范围内),燃料 ρR=0.84 g/cm2,估计约有 1/3 的产额来自α粒子自加热。