Suppr超能文献

Vps34 调节肌原纤维蛋白稳态以预防肥厚型心肌病。

Vps34 regulates myofibril proteostasis to prevent hypertrophic cardiomyopathy.

机构信息

Research Center for Biosignaling, Department of.

Medical Biology.

出版信息

JCI Insight. 2017 Jan 12;2(1):e89462. doi: 10.1172/jci.insight.89462.

Abstract

Hypertrophic cardiomyopathy (HCM) is a common heart disease with a prevalence of 1 in 500 in the general population. Several mutations in genes encoding cardiac proteins have been found in HCM patients, but these changes do not predict occurrence or prognosis and the molecular mechanisms underlying HCM remain largely elusive. Here we show that cardiac expression of vacuolar protein sorting 34 (Vps34) is reduced in a subset of HCM patients. In a mouse model, muscle-specific loss of Vps34 led to HCM-like manifestations and sudden death. Vps34-deficient hearts exhibited abnormal histopathologies, including myofibrillar disarray and aggregates containing αB-crystallin (CryAB). These features result from a block in the ESCRT-mediated proteolysis that normally degrades K63-polyubiquitinated CryAB. CryAB deposition was also found in myocardial specimens from a subset of HCM patients whose hearts showed decreased Vps34. Our results identify disruption of the previously unknown Vps34-CryAB axis as a potentially novel etiology of HCM.

摘要

肥厚型心肌病(HCM)是一种常见的心脏病,在普通人群中的患病率为 1/500。在 HCM 患者中发现了几种编码心脏蛋白的基因突变,但这些变化不能预测发病或预后,HCM 的分子机制仍很大程度上难以捉摸。在这里,我们表明 Vps34 在 HCM 患者中的一部分患者中心脏表达减少。在小鼠模型中,肌肉特异性 Vps34 的缺失导致 HCM 样表现和猝死。Vps34 缺陷型心脏表现出异常的组织病理学特征,包括肌原纤维排列紊乱和包含 αB-晶状体蛋白 (CryAB) 的聚集体。这些特征是由于 ESCRT 介导的蛋白水解过程受阻导致正常降解 K63-多聚泛素化的 CryAB 造成的。在心肌标本中也发现了一部分 HCM 患者的 CryAB 沉积,这些患者的心脏显示出 Vps34 的减少。我们的结果表明,Vps34-CryAB 轴的破坏可能是 HCM 的一种潜在的新病因。

相似文献

1
Vps34 regulates myofibril proteostasis to prevent hypertrophic cardiomyopathy.
JCI Insight. 2017 Jan 12;2(1):e89462. doi: 10.1172/jci.insight.89462.
3
A novel αB-crystallin R123W variant drives hypertrophic cardiomyopathy by promoting maladaptive calcium-dependent signal transduction.
Front Cardiovasc Med. 2023 Jun 26;10:1223244. doi: 10.3389/fcvm.2023.1223244. eCollection 2023.
4
Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E4138-46. doi: 10.1073/pnas.1505819112. Epub 2015 Jun 29.
7
AlphaB-crystallin modulates protein aggregation of abnormal desmin.
Circ Res. 2003 Nov 14;93(10):998-1005. doi: 10.1161/01.RES.0000102401.77712.ED. Epub 2003 Oct 23.
8
MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations.
J Mol Cell Cardiol. 2013 Dec;65:59-66. doi: 10.1016/j.yjmcc.2013.09.012. Epub 2013 Sep 29.
9
Myofilament protein dynamics modulate EAD formation in human hypertrophic cardiomyopathy.
Prog Biophys Mol Biol. 2017 Nov;130(Pt B):418-428. doi: 10.1016/j.pbiomolbio.2017.06.015. Epub 2017 Jun 22.
10
Targeted next-generation sequencing helps to decipher the genetic and phenotypic heterogeneity of hypertrophic cardiomyopathy.
Int J Mol Med. 2016 Oct;38(4):1111-24. doi: 10.3892/ijmm.2016.2732. Epub 2016 Sep 7.

引用本文的文献

1
Comprehensive bioinformatic analysis identifies potential therapeutic drugs for CryAB (R120G)-related cardiomyopathy.
BMC Cardiovasc Disord. 2025 Aug 30;25(1):643. doi: 10.1186/s12872-025-04897-0.
2
Desmin disorganisation: A key feature in feline hypertrophic cardiomyopathy.
PLoS One. 2025 Jul 14;20(7):e0327850. doi: 10.1371/journal.pone.0327850. eCollection 2025.
3
Experimental Models of Hypertrophic Cardiomyopathy: A Systematic Review.
JACC Basic Transl Sci. 2025 Apr;10(4):511-546. doi: 10.1016/j.jacbts.2024.10.017. Epub 2025 Jan 15.
4
Class III Phosphatidylinositol-3 Kinase/Vacuolar Protein Sorting 34 in Cardiovascular Health and Disease.
J Cardiovasc Transl Res. 2025 Apr;18(2):392-407. doi: 10.1007/s12265-024-10581-z. Epub 2025 Jan 16.
6
Regulated cell death pathways in cardiomyopathy.
Acta Pharmacol Sin. 2023 Aug;44(8):1521-1535. doi: 10.1038/s41401-023-01068-9. Epub 2023 Mar 13.
7
Autophagy in striated muscle diseases.
Front Cardiovasc Med. 2022 Oct 13;9:1000067. doi: 10.3389/fcvm.2022.1000067. eCollection 2022.
8
Class III PI3K Biology.
Curr Top Microbiol Immunol. 2022;436:69-93. doi: 10.1007/978-3-031-06566-8_3.
9
ATG14 and RB1CC1 play essential roles in maintaining muscle homeostasis.
Autophagy. 2021 Sep;17(9):2576-2585. doi: 10.1080/15548627.2021.1911549. Epub 2021 Apr 14.
10
Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis.
Front Physiol. 2020 Jun 4;11:586. doi: 10.3389/fphys.2020.00586. eCollection 2020.

本文引用的文献

1
ESCRTs Cooperate with a Selective Autophagy Receptor to Mediate Vacuolar Targeting of Soluble Cargos.
Mol Cell. 2015 Sep 17;59(6):1035-42. doi: 10.1016/j.molcel.2015.07.034. Epub 2015 Sep 10.
3
Contributions of risk factors and medical care to cardiovascular mortality trends.
Nat Rev Cardiol. 2015 Sep;12(9):508-30. doi: 10.1038/nrcardio.2015.82. Epub 2015 Jun 16.
4
INPP4B Is a PtdIns(3,4,5)P3 Phosphatase That Can Act as a Tumor Suppressor.
Cancer Discov. 2015 Jul;5(7):730-9. doi: 10.1158/2159-8290.CD-14-1329. Epub 2015 Apr 16.
6
The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity.
Biochim Biophys Acta. 2015 Feb;1852(2):188-94. doi: 10.1016/j.bbadis.2014.07.028. Epub 2014 Aug 1.
7
Mammalian target of rapamycin signaling in cardiac physiology and disease.
Circ Res. 2014 Jan 31;114(3):549-64. doi: 10.1161/CIRCRESAHA.114.302022.
8
Ubiquitin-proteasome system and hereditary cardiomyopathies.
J Mol Cell Cardiol. 2014 Jun;71:25-31. doi: 10.1016/j.yjmcc.2013.12.016. Epub 2013 Dec 28.
9
Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation.
J Biol Chem. 2013 Apr 19;288(16):11436-47. doi: 10.1074/jbc.M112.437103. Epub 2013 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验