Suppr超能文献

通过面部照片估算颅骨与相机的距离以进行颅面叠加

Estimating the Skull-to-Camera Distance from Facial Photographs for Craniofacial Superimposition.

作者信息

Stephan Carl N

机构信息

Laboratory for Human Craniofacial and Skeletal Identification (HuCS-ID Lab), School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.

出版信息

J Forensic Sci. 2017 Jul;62(4):850-860. doi: 10.1111/1556-4029.13353. Epub 2017 Jan 18.

Abstract

The overlay of a skull and a face image for identification purposes requires similar subject-to-camera distances (SCD) to be used at both photographic sessions so that differences in perspective do not compromise the anatomical comparisons. As the facial photograph is the reference standard, it is crucial to determine its SCD first and apply this value to photography of the skull. So far, such a method for estimating the SCD has been elusive (some say impossible), compromising the technical validity of the superimposition procedure. This paper tests the feasibility of using the palpebral fissure length and a well-established photographic algorithm to accurately estimate the SCD from the facial photograph. Recordings at known SCD across a 1-10 m range (repeated under two test conditions) demonstrate that the newly formulated method works: a mean SCD estimation error of 7% that translates into <1% perspective distortion error between estimated and actual conditions.

摘要

为了进行身份识别而将颅骨图像与面部图像叠加,需要在两次摄影过程中使用相似的受试者到相机的距离(SCD),以便视角差异不会影响解剖结构的比较。由于面部照片是参考标准,首先确定其SCD并将该值应用于颅骨摄影至关重要。到目前为止,这种估计SCD的方法一直难以捉摸(有人说不可能),这损害了叠加程序的技术有效性。本文测试了使用睑裂长度和成熟的摄影算法从面部照片中准确估计SCD的可行性。在1-10米范围内已知SCD的记录(在两种测试条件下重复)表明,新制定的方法是有效的:平均SCD估计误差为7%,这意味着估计条件与实际条件之间的视角畸变误差小于1%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验