Suppr超能文献

鸟枪法蛋白质组学中无标记定量方法的比较评估

Comparative evaluation of label-free quantification methods for shotgun proteomics.

作者信息

Bubis Julia A, Levitsky Lev I, Ivanov Mark V, Tarasova Irina A, Gorshkov Mikhail V

机构信息

Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia.

Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudny, Russia.

出版信息

Rapid Commun Mass Spectrom. 2017 Apr 15;31(7):606-612. doi: 10.1002/rcm.7829.

Abstract

RATIONALE

Label-free quantification (LFQ) is a popular strategy for shotgun proteomics. A variety of LFQ algorithms have been developed recently. However, a comprehensive comparison of the most commonly used LFQ methods is still rare, in part due to a lack of clear metrics for their evaluation and an annotated and quantitatively well-characterized data set.

METHODS

Five LFQ methods were compared: spectral counting based algorithms SI , emPAI, and NSAF, and approaches relying on the extracted ion chromatogram (XIC) intensities, MaxLFQ and Quanti. We used three criteria for performance evaluation: coefficient of variation (CV) of protein abundances between replicates; analysis of variance (ANOVA); and the root-mean-square error of logarithmized calculated concentration ratios, referred to as standard quantification error (SQE). Comparison was performed using a quantitatively annotated publicly available data set.

RESULTS

The best results in terms of inter-replicate reproducibility were observed for MaxLFQ and NSAF, although they exhibited larger standard quantification errors. Using NSAF, all quantitatively annotated proteins were correctly identified in the Bonferronni-corrected results of the ANOVA test. SI was found to be the most accurate in terms of SQE. Finally, the current implementations of XIC-based LFQ methods did not outperform the methods based on spectral counting for the data set used in this study.

CONCLUSIONS

Surprisingly, the performances of XIC-based approaches measured using three independent metrics were found to be comparable with more straightforward and simple MS/MS-based spectral counting approaches. The study revealed no clear leader among the latter. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

原理

无标记定量(LFQ)是鸟枪法蛋白质组学中一种常用的策略。最近已经开发了多种LFQ算法。然而,对最常用的LFQ方法进行全面比较仍然很少见,部分原因是缺乏用于评估它们的明确指标以及一个经过注释且定量特征良好的数据集。

方法

比较了五种LFQ方法:基于光谱计数的算法SI、emPAI和NSAF,以及依赖提取离子色谱图(XIC)强度的方法MaxLFQ和Quanti。我们使用三个标准进行性能评估:重复样本间蛋白质丰度的变异系数(CV);方差分析(ANOVA);以及对数化计算浓度比的均方根误差,称为标准定量误差(SQE)。使用一个经过定量注释的公开可用数据集进行比较。

结果

MaxLFQ和NSAF在重复样本间的重现性方面表现最佳,尽管它们的标准定量误差较大。使用NSAF时,在ANOVA测试的Bonferronni校正结果中所有定量注释的蛋白质都被正确鉴定。就SQE而言,SI被发现是最准确的。最后,对于本研究中使用的数据集,基于XIC的LFQ方法的当前实现并未优于基于光谱计数的方法。

结论

令人惊讶的是,使用三个独立指标测量的基于XIC的方法的性能与更直接简单的基于MS/MS的光谱计数方法相当。该研究并未在后者中发现明显的领先者。版权所有© 2017 John Wiley & Sons, Ltd.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验