Suppr超能文献

为早期结直肠癌患者制定个性化治疗方案。

Building personalized treatment plans for early-stage colorectal cancer patients.

作者信息

Lin Hung-Hsin, Wei Nien-Chih, Chou Teh-Ying, Lin Chun-Chi, Lan Yuan-Tsu, Chang Shin-Ching, Wang Huann-Sheng, Yang Shung-Haur, Chen Wei-Shone, Lin Tzu-Chen, Lin Jen-Kou, Jiang Jeng-Kai

机构信息

Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taiwan.

Department of Surgery, School of Medicine, National Yang-Ming University, Taiwan.

出版信息

Oncotarget. 2017 Feb 21;8(8):13805-13817. doi: 10.18632/oncotarget.14638.

Abstract

We developed a series of models to predict the likelihood of recurrence and the response to chemotherapy for the personalized treatment of stage I and II colorectal cancer patients. A recurrence prediction model was developed from 235 stage I/II patients. The model successfully distinguished between high-risk and low-risk groups, with a hazard ratio of recurrence of 4.66 (p < 0.0001). More importantly, the model was accurate for both stage I (hazard ratio = 5.87, p = 0.0006) and stage II (hazard ratio = 4.30, p < 0.0001) disease. This model performed much better than the Oncotype and ColoPrint commercial services in identifying patients at high risk for stage II recurrence. And unlike the commercial services, the robust model included recurrence prediction for stage I patients. As stage I/II CRC patients usually do not receive chemotherapy, we generated chemotherapy efficacy prediction models with data from 358 stage III patients. The predictions were highly accurate: the hazard ratio of recurrence for responders vs. non-responders was 4.13 for those treated with FOLFOX (p < 0.0001), and 3.16 (p = 0.0012) for those treated with fluorouracil. We have thus created a prognostic model that accurately identifies patients at high risk for recurrence, and the first accurate chemotherapy efficacy prediction model for individual patients. In the future, complete personalized treatment plans for stage I/II patients may be developed if the drug prediction models generated from stage III patients are verified to be effective for stage I and II patients in prospective studies.

摘要

我们开发了一系列模型,用于预测复发可能性以及对化疗的反应,以实现对I期和II期结直肠癌患者的个性化治疗。从235例I/II期患者中开发了一个复发预测模型。该模型成功区分了高危组和低危组,复发风险比为4.66(p<0.0001)。更重要的是,该模型对I期(风险比=5.87,p=0.0006)和II期(风险比=4.30,p<0.0001)疾病均准确。在识别II期复发高危患者方面,该模型的表现远优于Oncotype和ColoPrint商业服务。与商业服务不同的是,这个强大的模型包括了对I期患者的复发预测。由于I/II期结直肠癌患者通常不接受化疗,我们利用358例III期患者的数据生成了化疗疗效预测模型。预测结果高度准确:接受FOLFOX治疗的患者中,反应者与无反应者的复发风险比为4.13(p<0.0001),接受氟尿嘧啶治疗的患者中为3.16(p=0.0012)。因此,我们创建了一个能准确识别复发高危患者的预后模型,以及首个针对个体患者的准确化疗疗效预测模型。未来,如果从III期患者生成的药物预测模型在前瞻性研究中被证实对I期和II期患者有效,那么可能会为I/II期患者制定完整的个性化治疗方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验