Suppr超能文献

基于机器学习算法的转移性或复发性结直肠癌患者 FOLFOX 治疗反应预测。

FOLFOX treatment response prediction in metastatic or recurrent colorectal cancer patients via machine learning algorithms.

机构信息

Department of Colorectal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

出版信息

Cancer Med. 2020 Feb;9(4):1419-1429. doi: 10.1002/cam4.2786. Epub 2020 Jan 1.

Abstract

Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5-FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta-analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy.

摘要

早期识别转移性或复发性结直肠癌(CRC)患者对 FOLFOX(5-FU、亚叶酸钙和奥沙利铂)治疗敏感非常重要。我们进行了微阵列荟萃分析,以鉴定转移性或复发性 CRC 患者中 FOLFOX 反应者和非反应者之间差异表达的基因(DEGs),发现 WASHC4、HELZ、ERN1、RPS6KB1 和 APPBP2 的表达水平下调,而 IRF7、EML3、LYPLA2、DRAP1、RNH1、PKP3、TSPAN17、LSS、MLKL、PPP1R7、GCDH、C19ORF24 和 CCDC124 的表达水平在 FOLFOX 反应者中上调与非反应者相比。随后的功能注释表明,DEGs 显著富集于自噬、ErbB 信号通路、线粒体自噬、内吞作用、FoxO 信号通路、细胞凋亡和抗叶酸耐药途径。基于这些候选基因,我们应用了几种机器学习算法到训练集,然后通过交叉验证方法评估模型的性能。应用最佳调整参数的候选模型到测试集,最终模型显示出令人满意的性能。此外,我们还报告了 MLKL 和 CCDC124 基因表达是接受 FOLFOX 治疗的转移性 CRC 患者的独立预后因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51ca/7013065/3ec1a8c077a0/CAM4-9-1419-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验