Jee K-W, Zhang R, Bentefour E H, Doolan P J, Cascio E, Sharp G, Flanz J, Lu H-M
Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America.
Phys Med Biol. 2017 Mar 7;62(5):1905-1919. doi: 10.1088/1361-6560/aa5a43. Epub 2017 Jan 18.
Proton beam therapy benefits from the Bragg peak and delivers highly conformal dose distributions. However, the location of the end-of-range is subject to uncertainties related to the accuracy of the relative proton stopping power estimates and thereby the water-equivalent path length (WEPL) along the beam. To remedy the range uncertainty, an in vivo measurement of the WEPL through the patient, i.e. a proton-range radiograph, is highly desirable. Towards that goal, we have explored a novel method of proton radiography based on the time-resolved dose measured by a flat panel imager (FPI). A 226 MeV pencil beam and a custom-designed range modulator wheel (MW) were used to create a time-varying broad beam. The proton imaging technique used exploits this time dependency by looking at the dose rate at the imager as a function of time. This dose rate function (DRF) has a unique time-varying dose pattern at each depth of penetration. A relatively slow rotation of the MW (0.2 revolutions per second) and a fast image acquisition (30 frames per second, 33 ms sampling) provided a sufficient temporal resolution for each DRF. Along with the high output of the CsI:Tl scintillator, imaging with pixel binning (2 × 2) generated high signal-to-noise data at a very low radiation dose (0.1 cGy). Proton radiographs of a head phantom and a Gammex CT calibration phantom were taken with various configurations. The results of the phantom measurements show that the FPI can generate low noise and high spatial resolution proton radiographs. The WEPL values of the CT tissue surrogate inserts show that the measured relative stopping powers are accurate to ~2%. The panel did not show any noticeable radiation damage after the accumulative dose of approximately 3831 cGy. In summary, we have successfully demonstrated a highly practical method of generating proton radiography using an x-ray flat panel imager.
质子束治疗得益于布拉格峰,能够提供高度适形的剂量分布。然而,射程终点的位置存在不确定性,这与相对质子阻止本领估计的准确性有关,进而与沿射束方向的水等效路径长度(WEPL)有关。为了纠正射程不确定性,非常希望通过患者进行体内WEPL测量,即质子射程射线照相。为了实现这一目标,我们探索了一种基于平板成像器(FPI)测量的时间分辨剂量的新型质子射线照相方法。使用226 MeV笔形束和定制设计的射程调制轮(MW)来产生随时间变化的宽束。所采用的质子成像技术通过将成像器处的剂量率视为时间的函数来利用这种时间依赖性。该剂量率函数(DRF)在每个穿透深度都有独特的随时间变化的剂量模式。MW的相对较慢旋转速度(每秒0.2转)和快速图像采集(每秒30帧,采样时间约为33毫秒)为每个DRF提供了足够的时间分辨率。结合CsI:Tl闪烁体的高输出,采用像素合并(2×2)成像在非常低的辐射剂量(约0.1 cGy)下生成了高信噪比的数据。使用各种配置对头模和Gammex CT校准模体进行了质子射线照相。模体测量结果表明,FPI能够生成低噪声和高空间分辨率的质子射线照片。CT组织替代物插入物的WEPL值表明,测量的相对阻止本领精确到约2%。在累积剂量约为3831 cGy后,该平板未显示出任何明显的辐射损伤。总之,我们成功地展示了一种使用X射线平板成像器生成质子射线照相的非常实用的方法。