Stupakiewicz A, Szerenos K, Afanasiev D, Kirilyuk A, Kimel A V
Laboratory of Magnetism, Faculty of Physics, University of Bialystok, 1L Ciolkowskiego, 15-245 Bialystok, Poland.
Radboud University, Institute for Molecules and Materials, 135 Heyendaalseweg, 6525 AJ Nijmegen, The Netherlands.
Nature. 2017 Feb 2;542(7639):71-74. doi: 10.1038/nature20807. Epub 2017 Jan 18.
Discovering ways to control the magnetic state of media with the lowest possible production of heat and at the fastest possible speeds is important in the study of fundamental magnetism, with clear practical potential. In metals, it is possible to switch the magnetization between two stable states (and thus to record magnetic bits) using femtosecond circularly polarized laser pulses. However, the switching mechanisms in these materials are directly related to laser-induced heating close to the Curie temperature. Although several possible routes for achieving all-optical switching in magnetic dielectrics have been discussed, no recording has hitherto been demonstrated. Here we describe ultrafast all-optical photo-magnetic recording in transparent films of the dielectric cobalt-substituted garnet. A single linearly polarized femtosecond laser pulse resonantly pumps specific d-d transitions in the cobalt ions, breaking the degeneracy between metastable magnetic states. By changing the polarization of the laser pulse, we deterministically steer the net magnetization in the garnet, thus writing '0' and '1' magnetic bits at will. This mechanism outperforms existing alternatives in terms of the speed of the write-read magnetic recording event (less than 20 picoseconds) and the unprecedentedly low heat load (less than 6 joules per cubic centimetre).
在基础磁学研究中,找到以尽可能低的热量产生和尽可能快的速度控制介质磁态的方法非常重要,具有明显的实际应用潜力。在金属中,利用飞秒圆偏振激光脉冲可以在两个稳定状态之间切换磁化强度(从而记录磁位)。然而,这些材料中的切换机制与接近居里温度时激光诱导的加热直接相关。尽管已经讨论了在磁性电介质中实现全光切换的几种可能途径,但迄今为止尚未有记录得到证实。在此,我们描述了在介电钴取代石榴石透明薄膜中的超快全光光磁记录。单个线偏振飞秒激光脉冲共振泵浦钴离子中的特定d-d跃迁,打破亚稳磁态之间的简并。通过改变激光脉冲的偏振,我们可以确定性地控制石榴石中的净磁化强度,从而随意写入“0”和“1”磁位。就读写磁记录事件的速度(小于20皮秒)和前所未有的低热负荷(每立方厘米小于6焦耳)而言,这种机制优于现有的其他方法。