Suppr超能文献

一种使用稀疏编码对音高感知进行建模的新方法。

A New Approach to Model Pitch Perception Using Sparse Coding.

作者信息

Barzelay Oded, Furst Miriam, Barak Omri

机构信息

School of Electrical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv, Israel.

Rappaport Faculty of Medicine, Network Biology Research Laboratories, Technion, Haifa, Israel.

出版信息

PLoS Comput Biol. 2017 Jan 18;13(1):e1005338. doi: 10.1371/journal.pcbi.1005338. eCollection 2017 Jan.

Abstract

Our acoustical environment abounds with repetitive sounds, some of which are related to pitch perception. It is still unknown how the auditory system, in processing these sounds, relates a physical stimulus and its percept. Since, in mammals, all auditory stimuli are conveyed into the nervous system through the auditory nerve (AN) fibers, a model should explain the perception of pitch as a function of this particular input. However, pitch perception is invariant to certain features of the physical stimulus. For example, a missing fundamental stimulus with resolved or unresolved harmonics, or a low and high-level amplitude stimulus with the same spectral content-these all give rise to the same percept of pitch. In contrast, the AN representations for these different stimuli are not invariant to these effects. In fact, due to saturation and non-linearity of both cochlear and inner hair cells responses, these differences are enhanced by the AN fibers. Thus there is a difficulty in explaining how pitch percept arises from the activity of the AN fibers. We introduce a novel approach for extracting pitch cues from the AN population activity for a given arbitrary stimulus. The method is based on a technique known as sparse coding (SC). It is the representation of pitch cues by a few spatiotemporal atoms (templates) from among a large set of possible ones (a dictionary). The amount of activity of each atom is represented by a non-zero coefficient, analogous to an active neuron. Such a technique has been successfully applied to other modalities, particularly vision. The model is composed of a cochlear model, an SC processing unit, and a harmonic sieve. We show that the model copes with different pitch phenomena: extracting resolved and non-resolved harmonics, missing fundamental pitches, stimuli with both high and low amplitudes, iterated rippled noises, and recorded musical instruments.

摘要

我们的声学环境中充斥着重复性声音,其中一些与音高感知有关。目前仍不清楚听觉系统在处理这些声音时,是如何将物理刺激与其感知联系起来的。由于在哺乳动物中,所有听觉刺激都是通过听神经(AN)纤维传入神经系统的,因此一个模型应该能够解释音高感知是如何作为这种特定输入的函数的。然而,音高感知对于物理刺激的某些特征是不变的。例如,具有分解或未分解谐波的缺失基频刺激,或具有相同频谱内容的低电平及高电平幅度刺激——这些都会产生相同的音高感知。相比之下,这些不同刺激的AN表征对于这些影响并非不变。事实上,由于耳蜗和内毛细胞反应的饱和及非线性,这些差异会被AN纤维增强。因此,很难解释音高感知是如何从AN纤维的活动中产生的。我们引入了一种新颖的方法,用于从给定任意刺激的AN群体活动中提取音高线索。该方法基于一种称为稀疏编码(SC)的技术。它是通过从大量可能的时空原子(模板)(一个字典)中选取少数几个来表示音高线索。每个原子的活动量由一个非零系数表示,类似于一个活跃的神经元。这样一种技术已成功应用于其他模态,特别是视觉。该模型由一个耳蜗模型、一个SC处理单元和一个谐波筛组成。我们表明该模型能够应对不同的音高现象:提取分解和未分解的谐波、缺失的基音、高低幅度的刺激、迭代波纹噪声以及录制的乐器声音。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/230a/5308863/966d39f0ad0d/pcbi.1005338.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验