Jani Vivek P, Jelvani Alborz, Moges Selamawit, Nacharaju Parimala, Roche Camille, Dantsker David, Palmer Andre, Friedman Joel M, Cabrales Pedro
Bioengineering, University of California San Diego, La Jolla, California, United States of America.
Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America.
PLoS One. 2017 Jan 18;12(1):e0170041. doi: 10.1371/journal.pone.0170041. eCollection 2017.
Nearly 21 million components of blood and whole blood and transfused annually in the United States, while on average only 13.6 million units of blood are donated. As the demand for Red Blood Cells (RBCs) continues to increase due to the aging population, this deficit will be more significant. Despite decades of research to develop hemoglobin (Hb) based oxygen (O2) carriers (HBOCs) as RBC substitutes, there are no products approved for clinical use. Lumbricus terrestris erythrocruorin (LtEc) is the large acellular O2 carrying protein complex found in the earthworm Lumbricus terrestris. LtEc is an extremely stable protein complex, resistant to autoxidation, and capable of transporting O2 to tissue when transfused into mammals. These characteristics render LtEc a promising candidate for the development of the next generation HBOCs. LtEc has a short half-life in circulation, limiting its application as a bridge over days, until blood became available. Conjugation with polyethylene glycol (PEG-LtEc) can extend LtEc circulation time. This study explores PEG-LtEc pharmacokinetics and pharmacodynamics. To study PEG-LtEc pharmacokinetics, hamsters instrumented with the dorsal window chamber were subjected to a 40% exchange transfusion with 10 g/dL PEG-LtEc or LtEc and followed for 48 hours. To study the vascular response of PEG-LtEc, hamsters instrumented with the dorsal window chamber received multiple infusions of 10 g/dL PEG-LtEc or LtEc solution to increase plasma LtEc concentration to 0.5, then 1.0, and 1.5 g/dL, while monitoring the animals' systemic and microcirculatory parameters. Results confirm that PEGylation of LtEc increases its circulation time, extending the half-life to 70 hours, 4 times longer than that of unPEGylated LtEc. However, PEGylation increased the rate of LtEc oxidation in vivo. Vascular analysis verified that PEG-LtEc showed the absence of microvascular vasoconstriction or systemic hypertension. The molecular size of PEG-LtEc did not change the colloid osmotic pressure or blood volume expansion capacity compared to LtEc, due to LtEc's already large molecular size. Taken together, these results further encourage the development of PEG-LtEc as an O2 carrying therapeutic.
在美国,每年有近2100万个血液及全血成分被输注,而平均仅有1360万单位的血液被捐献。随着人口老龄化导致对红细胞(RBC)的需求持续增加,这种短缺将更加显著。尽管经过数十年研究来开发基于血红蛋白(Hb)的氧(O2)载体(HBOCs)作为红细胞替代品,但尚无获批用于临床的产品。地龙血红蛋白(LtEc)是在蚯蚓地龙中发现的大型无细胞携氧蛋白复合物。LtEc是一种极其稳定的蛋白复合物,抗自氧化,并且在输注到哺乳动物体内时能够将氧气输送到组织。这些特性使LtEc成为开发下一代HBOCs的有前景的候选者。LtEc在循环中的半衰期较短,限制了其作为直到血液可用前数天的桥梁的应用。与聚乙二醇结合(PEG-LtEc)可以延长LtEc的循环时间。本研究探讨PEG-LtEc的药代动力学和药效学。为研究PEG-LtEc的药代动力学,对装有背窗室的仓鼠进行40%的换血,输注10g/dL的PEG-LtEc或LtEc,并随访48小时。为研究PEG-LtEc的血管反应,对装有背窗室的仓鼠多次输注10g/dL的PEG-LtEc或LtEc溶液,以使血浆LtEc浓度增加到0.5,然后是1.0和1.5g/dL,同时监测动物的全身和微循环参数。结果证实,LtEc的聚乙二醇化增加了其循环时间,半衰期延长至70小时,比未聚乙二醇化的LtEc长4倍。然而,聚乙二醇化增加了LtEc在体内的氧化速率。血管分析证实,PEG-LtEc未显示微血管收缩或全身性高血压。与LtEc相比,PEG-LtEc的分子大小并未改变胶体渗透压或血容量扩充能力,因为LtEc本身分子大小就很大。综上所述,这些结果进一步鼓励将PEG-LtEc开发为一种携氧治疗剂。