Zucca Stefano, Griguoli Marilena, Malézieux Meryl, Grosjean Noëlle, Carta Mario, Mulle Christophe
Interdisciplinary Institute for Neuroscience, CNRS, Unité Mixte de Recherche 5297, University of Bordeaux, F-33000 Bordeaux, France.
Interdisciplinary Institute for Neuroscience, CNRS, Unité Mixte de Recherche 5297, University of Bordeaux, F-33000 Bordeaux, France
J Neurosci. 2017 Jan 18;37(3):587-598. doi: 10.1523/JNEUROSCI.2057-16.2016.
Despite extensive studies in hippocampal slices and incentive from computational theories, the synaptic mechanisms underlying information transfer at mossy fiber (mf) connections between the dentate gyrus (DG) and CA3 neurons in vivo are still elusive. Here we used an optogenetic approach in mice to selectively target and control the activity of DG granule cells (GCs) while performing whole-cell and juxtacellular recordings of CA3 neurons in vivo In CA3 pyramidal cells (PCs), mf-CA3 synaptic responses consisted predominantly of an IPSP at low stimulation frequency (0.05 Hz). Upon increasing the frequency of stimulation, a biphasic response was observed consisting of a brief mf EPSP followed by an inhibitory response lasting on the order of 100 ms. Spike transfer at DG-CA3 interneurons recorded in the juxtacellular mode was efficient at low presynaptic stimulation frequency and appeared insensitive to an increased frequency of GC activity. Overall, this resulted in a robust and slow feedforward inhibition of spike transfer at mf-CA3 pyramidal cell synapses. Short-term plasticity of EPSPs with increasing frequency of presynaptic activity allowed inhibition to be overcome to reach spike discharge in CA3 PCs. Whereas the activation of GABA receptors was responsible for the direct inhibition of light-evoked spike responses, the slow inhibition of spiking activity required the activation of GABA receptors in CA3 PCs. The slow inhibitory response defined an optimum frequency of presynaptic activity for spike transfer at ∼10 Hz. Altogether these properties define the temporal rules for efficient information transfer at DG-CA3 synaptic connections in the intact circuit.
Activity-dependent changes in synaptic strength constitute a basic mechanism for memory. Synapses from the dentate gyrus (DG) to the CA3 area of the hippocampus are distinctive for their prominent short-term plasticity, as studied in slices. Plasticity of DG-CA3 connections may assist in the encoding of precise memory in the CA3 network. Here we characterize DG-CA3 synaptic transmission in vivo using targeted optogenetic activation of DG granule cells while recording in whole-cell patch-clamp and juxtacellular configuration from CA3 pyramidal cells and interneurons. We show that, in vivo, short-term plasticity of excitatory inputs to CA3 pyramidal cells combines with robust feedforward inhibition mediated by both GABA and GABA receptors to control the efficacy and temporal rules for information transfer at DG-CA3 connections.
尽管对海马切片进行了广泛研究并受到计算理论的启发,但齿状回(DG)与体内CA3神经元之间苔藓纤维(mf)连接处信息传递的突触机制仍不清楚。在这里,我们在小鼠中采用光遗传学方法,在对CA3神经元进行体内全细胞和近细胞记录的同时,选择性地靶向和控制DG颗粒细胞(GCs)的活动。在CA3锥体细胞(PCs)中,mf-CA3突触反应在低刺激频率(0.05Hz)时主要由抑制性突触后电位(IPSP)组成。随着刺激频率的增加,观察到一种双相反应,包括一个短暂的mf兴奋性突触后电位(EPSP),随后是持续约100毫秒的抑制性反应。以近细胞模式记录的DG-CA3中间神经元的动作电位传递在低突触前刺激频率下是有效的,并且似乎对GC活动频率的增加不敏感。总体而言,这导致了mf-CA3锥体细胞突触处动作电位传递的强大而缓慢的前馈抑制。随着突触前活动频率的增加,EPSP的短期可塑性使得抑制作用被克服,从而在CA3 PCs中达到动作电位发放。虽然GABA受体的激活负责直接抑制光诱发的动作电位反应,但对动作电位活动的缓慢抑制需要CA3 PCs中GABA受体的激活。缓慢的抑制反应定义了在约10Hz时动作电位传递的突触前活动的最佳频率。总之,这些特性定义了完整回路中DG-CA3突触连接处有效信息传递的时间规则。
突触强度的活动依赖性变化构成了记忆的基本机制。从齿状回(DG)到海马体CA3区域的突触因其在切片中研究的显著短期可塑性而与众不同。DG-CA3连接的可塑性可能有助于CA3网络中精确记忆的编码。在这里,我们在对CA3锥体细胞和中间神经元进行全细胞膜片钳和近细胞配置记录的同时,使用靶向光遗传学激活DG颗粒细胞来表征体内DG-CA3突触传递。我们表明,在体内,CA3锥体细胞兴奋性输入的短期可塑性与由GABA和GABA受体介导的强大前馈抑制相结合,以控制DG-CA3连接处信息传递的效率和时间规则。