Suppr超能文献

从一个人工生态系统中洞察资源消耗、交叉喂养、系统崩溃、稳定性和生物多样性。

Insights into resource consumption, cross-feeding, system collapse, stability and biodiversity from an artificial ecosystem.

作者信息

Liu Yu, Sumpter David

机构信息

Department of Mathematics, Uppsala University, 75105 Uppsala, Sweden

Department of Mathematics, Uppsala University, 75105 Uppsala, Sweden.

出版信息

J R Soc Interface. 2017 Jan;14(126). doi: 10.1098/rsif.2016.0816.

Abstract

Community ecosystems at very different levels of biological organization often have similar properties. Coexistence of multiple species, cross-feeding, biodiversity and fluctuating population dynamics are just a few of the properties that arise in a range of ecological settings. Here we develop a bottom-up model of consumer-resource interactions, in the form of an artificial ecosystem 'number soup', which reflects basic properties of many bacterial and other community ecologies. We demonstrate four key properties of the number soup model: (i) communities self-organize so that all available resources are fully consumed; (ii) reciprocal cross-feeding is a common evolutionary outcome, which evolves in a number of stages, and many transitional species are involved; (iii) the evolved ecosystems are often 'robust yet fragile', with keystone species required to prevent the whole system from collapsing; (iv) non-equilibrium dynamics and chaotic patterns are general properties, readily generating rich biodiversity. These properties have been observed in empirical ecosystems, ranging from bacteria to rainforests. Establishing similar properties in an evolutionary model as simple as the number soup suggests that these four properties are ubiquitous features of all community ecosystems, and raises questions about how we interpret ecosystem structure in the context of natural selection.

摘要

处于截然不同生物组织层次的群落生态系统往往具有相似的特性。多个物种的共存、交叉取食、生物多样性以及波动的种群动态,只是在一系列生态环境中出现的部分特性。在此,我们构建了一个自下而上的消费者 - 资源相互作用模型,其形式为一个人工生态系统“数字汤”,它反映了许多细菌及其他群落生态的基本特性。我们展示了数字汤模型的四个关键特性:(i)群落会自我组织,从而使所有可用资源被充分消耗;(ii)相互交叉取食是一种常见的进化结果,它会历经多个阶段进化,且涉及许多过渡物种;(iii)进化后的生态系统通常“稳健却脆弱”,需要关键物种来防止整个系统崩溃;(iv)非平衡动态和混沌模式是普遍特性,很容易产生丰富的生物多样性。这些特性在从细菌到雨林的实证生态系统中都已被观察到。在像数字汤这样简单的进化模型中确立相似特性,表明这四个特性是所有群落生态系统的普遍特征,并引发了关于我们如何在自然选择背景下解释生态系统结构的问题。

相似文献

2
Bottom-up effects of species diversity on the functioning and stability of food webs.
J Anim Ecol. 2012 May;81(3):701-13. doi: 10.1111/j.1365-2656.2011.01949.x. Epub 2012 Feb 10.
3
[Impacts of cross-habitat resource subsidies on ecosystems: A review.].
Ying Yong Sheng Tai Xue Bao. 2017 Feb;28(2):699-711. doi: 10.13287/j.1001-9332.201702.035.
4
Keystone species and vulnerable species in ecological communities: strong or weak interactors?
J Theor Biol. 2005 Jul 7;235(1):95-103. doi: 10.1016/j.jtbi.2004.12.022.
5
'Trophic whales' as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment.
J Anim Ecol. 2015 May;84(3):680-691. doi: 10.1111/1365-2656.12324. Epub 2014 Dec 29.
8
Environmental change makes robust ecological networks fragile.
Nat Commun. 2016 Aug 11;7:12462. doi: 10.1038/ncomms12462.
9
Trophic dynamics of a simple model ecosystem.
Proc Biol Sci. 2017 Sep 13;284(1862). doi: 10.1098/rspb.2017.1463.
10
Stability of Ecosystems Under Invasions.
Bull Math Biol. 2016 Nov;78(11):2186-2211. doi: 10.1007/s11538-016-0216-7. Epub 2016 Oct 19.

引用本文的文献

1
The faecal metabolome of black howler monkeys (Alouatta pigra) varies in response to seasonal dietary changes.
Mol Ecol. 2022 Aug;31(15):4146-4161. doi: 10.1111/mec.16559. Epub 2022 Jun 21.
2
Analysis of productivity and stability of synthetic microbial communities.
J R Soc Interface. 2019 Jan 31;16(150):20180859. doi: 10.1098/rsif.2018.0859.
3
Beware batch culture: Seasonality and niche construction predicted to favor bacterial adaptive diversification.
PLoS Comput Biol. 2017 Mar 30;13(3):e1005459. doi: 10.1371/journal.pcbi.1005459. eCollection 2017 Mar.

本文引用的文献

2
Dynamics of Simple Food Webs.
Bull Math Biol. 2015 Oct;77(10):1833-53. doi: 10.1007/s11538-015-0106-4. Epub 2015 Sep 21.
3
IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system.
Science. 2015 Jul 10;349(6244):1259425. doi: 10.1126/science.1259425.
4
Evolutionary game theory: cells as players.
Mol Biosyst. 2014 Dec;10(12):3044-65. doi: 10.1039/c3mb70602h.
5
Nutrient cross-feeding in the microbial world.
Front Microbiol. 2014 Jul 8;5:350. doi: 10.3389/fmicb.2014.00350. eCollection 2014.
6
Microbial syntrophy: interaction for the common good.
FEMS Microbiol Rev. 2013 May;37(3):384-406. doi: 10.1111/1574-6976.12019.
8
Evolution of cooperative cross-feeding could be less challenging than originally thought.
PLoS One. 2010 Nov 29;5(11):e14121. doi: 10.1371/journal.pone.0014121.
9
Productivity and diversity in a cross-feeding population of artificial organisms.
Evolution. 2010 Sep;64(9):2716-30. doi: 10.1111/j.1558-5646.2010.01020.x.
10
Novel cooperation experimentally evolved between species.
Evolution. 2010 Jul;64(7):2166-72. doi: 10.1111/j.1558-5646.2010.00959.x. Epub 2010 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验