Nath Krishna, O'Donnell James P, Lu Yan
a Department of Biological Sciences , Western Michigan University , Kalamazoo , MI , USA.
Plant Signal Behav. 2017 Feb;12(2):e1282023. doi: 10.1080/15592324.2017.1282023.
A previous study showed that Nitrogen-Fixing-subunit-U-type protein NFU3 may act an iron-sulfur scaffold protein in the assembly and transfer of 4Fe-4S and 3Fe-4S clusters in the chloroplast. Examples of 4Fe-4S and 3Fe-4S-requiring proteins and complexes include Photosystem I (PSI), NAD(P)H dehydrogenase, and ferredoxin-dependent glutamine oxoglutarate aminotransferases. In this paper, the authors provided additional evidence for the role of NFU3 in 4Fe-4S and 3Fe-4S cluster assembly and transfer, as well as its role in overall plant fitness. Confocal microscopic analysis of the fluorescently-tagged NFU3 protein confirmed the chloroplast localization of the NFU3 protein. Detailed analysis of chlorophyll fluorescence data revealed that a substantial increase in minimal fluorescence is the primary contributor to the decrease in PSII maximum photochemical efficiency observed in the nfu3 mutants. The substantial increase in minimal fluorescence in the nfu3 mutants is probably the result of an impaired PSI function, blockage of electron flow from PSII to PSI, and over-accumulation of reduced plastoquinone at the acceptor side of PSII. Analyses of seed morphology and germination showed that NFU3 is essential to seed development and germination, in addition to plant growth, development, and flowering. In summary, NFU3 has wide-ranging effects on many biologic processes and is therefore important to overall plant fitness. NFU3 may exert these effects by modulating the availability of 4Fe-4S and 3Fe-4S clusters to 4Fe-4S and 3Fe-4S-requiring proteins and complexes involved in various biologic processes.
先前的一项研究表明,固氮亚基U型蛋白NFU3可能在叶绿体中4Fe-4S和3Fe-4S簇的组装和转移过程中充当铁硫支架蛋白。需要4Fe-4S和3Fe-4S的蛋白质及复合物的例子包括光系统I(PSI)、NAD(P)H脱氢酶和铁氧还蛋白依赖性谷氨酰胺酮戊二酸转氨酶。在本文中,作者提供了更多证据,证明NFU3在4Fe-4S和3Fe-4S簇的组装和转移中的作用,以及它在植物整体适应性方面的作用。对荧光标记的NFU3蛋白进行的共聚焦显微镜分析证实了NFU3蛋白在叶绿体中的定位。对叶绿素荧光数据的详细分析表明,最小荧光的大幅增加是nfu3突变体中观察到的PSII最大光化学效率下降的主要原因。nfu3突变体中最小荧光的大幅增加可能是PSI功能受损、电子从PSII流向PSI受阻以及PSII受体侧还原质体醌过度积累的结果。种子形态和萌发分析表明,NFU3除了对植物生长、发育和开花至关重要外,对种子发育和萌发也必不可少。总之,NFU3对许多生物学过程具有广泛影响,因此对植物整体适应性很重要。NFU3可能通过调节4Fe-4S和3Fe-4S簇对参与各种生物学过程的需要4Fe-4S和3Fe-4S的蛋白质及复合物的可用性来发挥这些作用。