Falzone Nadia, Lee Boon Q, Fernández-Varea José M, Kartsonaki Christiana, Stuchbery Andrew E, Kibédi Tibor, Vallis Katherine A
Department of Oncology, CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom. Department of Biomedical Science, Tshwane University of Technology, Pretoria, South Africa.
Phys Med Biol. 2017 Mar 21;62(6):2239-2253. doi: 10.1088/1361-6560/aa5aa4. Epub 2017 Jan 19.
The aim of this study was to investigate the impact of decay data provided by the newly developed stochastic atomic relaxation model BrIccEmis on dose point kernels (DPKs - radial dose distribution around a unit point source) and S-values (absorbed dose per unit cumulated activity) of 14 Auger electron (AE) emitting radionuclides, namely Ga, Br, Zr, Nb, Tc, In, Sn, Sb, I, I, I, La, Pt and Tl. Radiation spectra were based on the nuclear decay data from the medical internal radiation dose (MIRD) RADTABS program and the BrIccEmis code, assuming both an isolated-atom and condensed-phase approach. DPKs were simulated with the PENELOPE Monte Carlo (MC) code using event-by-event electron and photon transport. S-values for concentric spherical cells of various sizes were derived from these DPKs using appropriate geometric reduction factors. The number of Auger and Coster-Kronig (CK) electrons and x-ray photons released per nuclear decay (yield) from MIRD-RADTABS were consistently higher than those calculated using BrIccEmis. DPKs for the electron spectra from BrIccEmis were considerably different from MIRD-RADTABS in the first few hundred nanometres from a point source where most of the Auger electrons are stopped. S-values were, however, not significantly impacted as the differences in DPKs in the sub-micrometre dimension were quickly diminished in larger dimensions. Overestimation in the total AE energy output by MIRD-RADTABS leads to higher predicted energy deposition by AE emitting radionuclides, especially in the immediate vicinity of the decaying radionuclides. This should be taken into account when MIRD-RADTABS data are used to simulate biological damage at nanoscale dimensions.
本研究的目的是调查新开发的随机原子弛豫模型BrIccEmis提供的衰变数据对14种发射俄歇电子(AE)的放射性核素(即镓、溴、锆、铌、锝、铟、锡、锑、碘、碘、碘、镧、铂和铊)的剂量点核(DPK——单位点源周围的径向剂量分布)和S值(每单位累积活度的吸收剂量)的影响。辐射光谱基于医学内照射剂量(MIRD)RADTABS程序和BrIccEmis代码的核衰变数据,同时采用孤立原子和凝聚相方法。使用PENELOPE蒙特卡罗(MC)代码通过逐个事件的电子和光子输运来模拟DPK。使用适当的几何缩减因子从这些DPK中得出各种尺寸的同心球细胞的S值。MIRD - RADTABS每核衰变释放的俄歇电子和科斯特 - 克勒尼希(CK)电子以及X射线光子的数量(产额)始终高于使用BrIccEmis计算的数量。在距点源最初几百纳米处,BrIccEmis电子光谱的DPK与MIRD - RADTABS有很大不同,此处大多数俄歇电子会停止。然而,S值并未受到显著影响,因为亚微米尺寸DPK中的差异在较大尺寸中会迅速减小。MIRD - RADTABS对AE总能量输出的高估导致发射AE的放射性核素预测的能量沉积更高,尤其是在衰变放射性核素的紧邻区域。在使用MIRD - RADTABS数据模拟纳米尺度的生物损伤时应考虑到这一点。