Han Paul K J, Umstead Kendall L, Bernhardt Barbara A, Green Robert C, Joffe Steven, Koenig Barbara, Krantz Ian, Waterston Leo B, Biesecker Leslie G, Biesecker Barbara B
Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, Maine, USA.
Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA.
Genet Med. 2017 Aug;19(8):918-925. doi: 10.1038/gim.2016.212. Epub 2017 Jan 19.
Clinical next-generation sequencing (CNGS) is introducing new opportunities and challenges into the practice of medicine. Simultaneously, these technologies are generating uncertainties of an unprecedented scale that laboratories, clinicians, and patients are required to address and manage. We describe in this report the conceptual design of a new taxonomy of uncertainties around the use of CNGS in health care.
Interviews to delineate the dimensions of uncertainty in CNGS were conducted with genomics experts and themes were extracted in order to expand on a previously published three-dimensional taxonomy of medical uncertainty. In parallel, we developed an interactive website to disseminate the CNGS taxonomy to researchers and engage them in its continued refinement.
The proposed taxonomy divides uncertainty along three axes-source, issue, and locus-and further discriminates the uncertainties into five layers with multiple domains. Using a hypothetical clinical example, we illustrate how the taxonomy can be applied to findings from CNGS and used to guide stakeholders through interpretation and implementation of variant results.
The utility of the proposed taxonomy lies in promoting consistency in describing dimensions of uncertainty in publications and presentations, to facilitate research design and management of the uncertainties inherent in the implementation of CNGS.Genet Med advance online publication 19 January 2017.
临床下一代测序(CNGS)正在给医学实践带来新的机遇和挑战。与此同时,这些技术正在产生前所未有的规模的不确定性,实验室、临床医生和患者都需要应对和管理这些不确定性。我们在本报告中描述了围绕在医疗保健中使用CNGS的不确定性的新分类法的概念设计。
与基因组学专家进行访谈,以勾勒出CNGS中不确定性的维度,并提取主题,以便在先前发表的医学不确定性三维分类法的基础上进行拓展。同时,我们开发了一个交互式网站,向研究人员传播CNGS分类法,并让他们参与其持续完善。
提议的分类法沿着三个轴——来源、问题和场所——划分不确定性,并进一步将不确定性细分为具有多个领域的五层。通过一个假设的临床例子,我们说明了该分类法如何应用于CNGS的结果,并用于指导利益相关者对变异结果进行解读和实施。
提议的分类法的效用在于促进在出版物和报告中描述不确定性维度时的一致性,以促进研究设计以及管理CNGS实施中固有的不确定性。《遗传医学》2017年1月19日在线优先发表。