Suppr超能文献

基于频谱的对称正定矩阵表示用于使用深度神经网络的信号检测

Spectral-Based SPD Matrix Representation for Signal Detection Using a Deep Neutral Network.

作者信息

Wang Jiangyi, Hua Xiaoqiang, Zeng Xinwu

机构信息

School of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, China.

出版信息

Entropy (Basel). 2020 May 22;22(5):585. doi: 10.3390/e22050585.

Abstract

The symmetric positive definite (SPD) matrix has attracted much attention in classification problems because of its remarkable performance, which is due to the underlying structure of the Riemannian manifold with non-negative curvature as well as the use of non-linear geometric metrics, which have a stronger ability to distinguish SPD matrices and reduce information loss compared to the Euclidean metric. In this paper, we propose a spectral-based SPD matrix signal detection method with deep learning that uses time-frequency spectra to construct SPD matrices and then exploits a deep SPD matrix learning network to detect the target signal. Using this approach, the signal detection problem is transformed into a binary classification problem on a manifold to judge whether the input sample has target signal or not. Two matrix models are applied, namely, an SPD matrix based on spectral covariance and an SPD matrix based on spectral transformation. A simulated-signal dataset and a semi-physical simulated-signal dataset are used to demonstrate that the spectral-based SPD matrix signal detection method with deep learning has a gain of 1.7-3.3 dB under appropriate conditions. The results show that our proposed method achieves better detection performances than its state-of-the-art spectral counterparts that use convolutional neural networks.

摘要

对称正定(SPD)矩阵因其卓越的性能在分类问题中备受关注,这归因于具有非负曲率的黎曼流形的底层结构以及非线性几何度量的使用,与欧几里得度量相比,它们具有更强的区分SPD矩阵的能力并减少信息损失。在本文中,我们提出一种基于深度学习的基于频谱的SPD矩阵信号检测方法,该方法使用时频谱构建SPD矩阵,然后利用深度SPD矩阵学习网络检测目标信号。通过这种方法,信号检测问题被转化为流形上的二分类问题,以判断输入样本是否具有目标信号。应用了两种矩阵模型,即基于频谱协方差的SPD矩阵和基于频谱变换的SPD矩阵。使用模拟信号数据集和半物理模拟信号数据集来证明基于深度学习的基于频谱的SPD矩阵信号检测方法在适当条件下具有1.7 - 3.3 dB的增益。结果表明,我们提出的方法比使用卷积神经网络的现有最佳频谱方法具有更好的检测性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验